About the Cisco Validated Design Program

The Cisco Validated Design (CVD) program consists of systems and solutions designed, tested, and documented to facilitate faster, more reliable, and more predictable customer deployments. For more information, see:

ALL DESIGNS, SPECIFICATIONS, STATEMENTS, INFORMATION, AND RECOMMENDATIONS (COLLECTIVELY, "DESIGNS") IN THIS MANUAL ARE PRESENTED "AS IS," WITH ALL FAULTS. CISCO AND ITS SUPPLIERS DISCLAIM ALL WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE. IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THE DESIGNS, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

THE DESIGNS ARE SUBJECT TO CHANGE WITHOUT NOTICE. USERS ARE SOLELY RESPONSIBLE FOR THEIR APPLICATION OF THE DESIGNS. THE DESIGNS DO NOT CONSTITUTE THE TECHNICAL OR OTHER PROFESSIONAL ADVICE OF CISCO, ITS SUPPLIERS OR PARTNERS. USERS SHOULD CONSULT THEIR OWN TECHNICAL ADVISORS BEFORE IMPLEMENTING THE DESIGNS. RESULTS MAY VARY DEPENDING ON FACTORS NOT TESTED BY CISCO.

CCDE, CCENT, Cisco Eos, Cisco Lumin, Cisco Nexus, Cisco StadiumVision, Cisco TelePresence, Cisco WebEx, the Cisco logo, DCE, and Welcome to the Human Network are trademarks; Changing the Way We Work, Live, Play, and Learn and Cisco Store are service marks; and Access Registrar, Aironet, AsyncOS, Bringing the Meeting To You, Catalyst, CCDP, CCIE, CCIP, CCNA, CCNP, CCSP, CCVP, Cisco, the Cisco Certified Internetwork Expert logo, Cisco IOS, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Cisco Unified Computing System (Cisco UCS), Cisco UCS B-Series Blade Servers, Cisco UCS C-Series Rack Servers, Cisco UCS S-Series Storage Servers, Cisco UCS Manager, Cisco UCS Management Software, Cisco Unified Fabric, Cisco Application Centric Infrastructure, Cisco Nexus 9000 Series, Cisco Nexus 7000 Series. Cisco Prime Data Center Network Manager, Cisco NX-OS Software, Cisco MDS Series, Cisco Unity, Collaboration Without Limitation, EtherFast, EtherSwitch, Event Center, Fast Step, Follow Me Browsing, FormShare, GigaDrive, HomeLink, Internet Quotient, IOS, iPhone, iQuick Study, LightStream, Linksys, MediaTone, MeetingPlace, MeetingPlace Chime Sound, MGX, Networkers, Networking Academy, Network Registrar, PCNow, PIX, PowerPanels, ProConnect, ScriptShare, SenderBase, SMARTnet, Spectrum Expert, StackWise, The Fastest Way to Increase Your Internet Quotient, TransPath, WebEx, and the WebEx logo are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the United States and certain other countries.

All other trademarks mentioned in this document or website are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (0809R)

© 2018 Cisco Systems, Inc. All rights reserved.
Table of Contents

About the Cisco Validated Design Program .. 2
Executive Summary ... 7
Solution Overview ... 8
 Introduction ... 8
 Audience ... 8
 Goals and Objectives of this Document .. 8
 FlashStack System Overview ... 9
 Design Principles .. 10
 FlashStack Solution Benefits ... 10
Infrastructure Requirements for the SAP HANA Database .. 12
 CPU ... 12
 Memory ... 12
 CPU and Memory Combinations .. 12
 Network ... 13
 Storage ... 14
 Filesystem Layout .. 15
 Operating System .. 16
 High Availability .. 16
Technology Overview .. 17
 Cisco Unified Computing System .. 17
 Cisco Unified Computing System Components .. 18
 Cisco UCS Manager .. 19
 Cisco UCS Service Profile .. 20
 Cisco UCS 6300 Unified Fabric Interconnects .. 24
 Cisco UCS 6300 Series Fabric Interconnect Models .. 25
 Cisco UCS 2304XP Fabric Extender .. 26
 Cisco UCS Blade Chassis .. 26
 Cisco UCS B480 M5 Blade Server ... 26
 Cisco VIC Interface Card ... 27
 Cisco VIC 1380 Virtual Interface Card .. 28
 Cisco Nexus 9336C–FX2 Switches .. 28
 Cisco MDS 9148S 16G FC Switches ... 29
 Purity Operating Environment ... 30
 Purity/FA Pure1® ... 32
 Experience Evergreen™ Storage ... 33
Solution Architecture .. 34
Physical Topology.. 34
Considerations... 35
Solution components and Software Revisions... 35
Configuration Guidelines... 36
Management Pod Installation ... 41
Management PoD Cisco Nexus 9000 Series Switch Network Configuration ... 41
Device Cabling .. 41
Cisco Nexus 9000 Series Switches – Network Initial Configuration Setup .. 43
Enable Appropriate Cisco Nexus 9000 Series Switches–Features and Settings ... 46
Create VLANs for SAP HANA Management Traffic ... 47
Configure Virtual Port–Channel Domain ... 47
Configure Network Interfaces for the VPC Peer Links .. 48
Direct Connection of Management Pod to FlashStack Infrastructure .. 49
Dual-Homed FEX Topology (Active/Active FEX Topology) for 1 GE Management Access 51
Configure Interfaces to Cisco Nexus 2248 Fabric Extender Switch ... 52
Configure Interfaces to Cisco UCS C220 Management Server ... 52
Management Server Installation ... 53
Server Configuration .. 53
CIMC Configuration ... 54
Storage Configuration .. 55
VMware ESXi Installation ... 59
Install ESXi... 60
Set Up Management Networking for ESXi Hosts .. 61
VMware ESXi Host ESXi-Mgmt-01 .. 62
SAP HANA PoD Cisco Nexus 9000 Series Switch Network Configuration ... 66
Device Cabling .. 66
Cisco Nexus 9000 A Initial Configuration ... 70
Cisco Nexus 9000 B Initial Configuration ... 71
Enable Appropriate Cisco Nexus 9000 Series Switches–Features and Settings ... 73
Create VLANs for SAP HANA Traffic ... 73
Configure Virtual Port–Channel Domain ... 74
Configure Network Interfaces for the VPC Peer Links .. 75
Configure vPCs with Cisco UCS Fabric Interconnect ... 76
Configure Ports Connecting to Pure Storage FlashArray//XiSCSI Ports .. 79
Configure Cisco MDS 9148S Switches ... 81
Cisco MDS Initial Configuration .. 82
Configure the Management Port and Enable Essential Features ... 86
Configure Fibre Channel Ports and Port Channels .. 86
Configure VSANs ... 87
Cisco UCS Configuration Overview .. 88
High-Level Steps to Configure Cisco Unified Computing System ... 88
Initial Setup of Cisco UCS 6332-16UP Fabric Interconnects ... 88
Log in to Cisco UCS Manager ... 90
Chassis Discovery Policy .. 91
Configure Server Ports .. 92
Configure FC SAN Uplink Ports ... 93
Configure Ethernet Uplink Ports ... 94
Acknowledge Cisco UCS Chassis and Rack-Mount Servers ... 95
Create LAN Uplink Port Channels .. 96
Create FC Port Channels .. 102
Create New Organization .. 106
Create MAC Address Pools .. 107
Create WWNN Pool .. 110
Create WWPN Pool .. 111
Create UUID Suffix Pool ... 114
Add Block of IP Addresses for KVM Access .. 115
Power Policy .. 116
Power Control Policy .. 117
Create Host Firmware Package ... 118
Create Server BIOS Policy .. 119
Create Serial over LAN Policy .. 124
Update Default Maintenance Policy .. 125
Set Jumbo Frames in Cisco UCS Fabric .. 126
Network Control Policy ... 127
LAN Configurations ... 129
SAN Configurations .. 150
Create Boot Policy for SAN Boot ... 160
Create Service Profile Templates for SAP HANA Nodes .. 167
Create Service Profile from the Template .. 181
Create and Configure Fiber Channel Zoning ... 183
Configure Pure Storage FlashArray//X .. 189
Configure Host ... 189
Configure Volume ... 192
Configure NFS share for /hana/shared ... 197
Creating NFS Share .. 204
Reference Workloads and Use Cases .. 215
SAP HANA Node OS Preparation – SLES for SAP SP3 .. 215
OS Installation .. 215
Post Installation Steps ... 231
SAP Notes Recommended Implementation ... 241
SAP HANA Node OS Preparation - RHEL for SAP HANA 7.4 .. 243
OS Installation .. 243
Post Installation steps ... 254
SAP Notes Recommendation Implementation ... 260
System preparation for SAP HANA Scale-Up use-case ... 261
 Workload Definition ... 261
 Requirements .. 261
 Configure Storage .. 262
 Configure System for Storage Access .. 264
System preparation for SAP HANA Scale-Out Use Case ... 266
 Workload Definition ... 267
 Requirements .. 267
 Configure Storage .. 267
 Configure System for Storage Access .. 269
 SSH Keys .. 274
 SAP HANA Nodes Access to DATA and LOG LUNs ... 274
SAP HANA Installation .. 275
 Important SAP Notes ... 275
HWCCT: fspert parameters .. 277
 SAP HANA 1.0 .. 277
 SAP HANA 2.0 .. 277
Pure Storage FlashArray//IX: Sizing Guidelines .. 278
References ... 280
 Certified SAP HANA Hardware Directory .. 280
 SAP HANA TDI Documentation .. 280
 SAP Notes .. 280
 Cisco and Pure Storage: FlashStack .. 280
Summary ... 281
About the Author .. 282
Acknowledgements .. 282
Executive Summary

Cisco Unified Computing System™ (Cisco UCS®) is a next-generation data center platform that unites computing, network, storage access, and virtualization into a single cohesive system. Cisco UCS is an ideal platform for the architecture of mission critical database workloads. The combination of the Cisco UCS platform, Pure Storage FlashArray//X®, and SAP HANA can accelerate your IT transformation by enabling faster deployments, greater flexibility of choice, efficiency, and lower risk.

This Cisco Validated Design (CVD) describes a FlashStack reference architecture for deploying SAP HANA TDI on Pure Storage FlashArray//X using Cisco UCS compute servers, Cisco MDS Switches and Cisco Nexus Switches. Cisco and Pure Storage has validated the reference architecture with SAP HANA workload in its lab. This document presents the hardware and software configuration of the components involved and offers implementation and best practices guidance.

FlashStack for SAP is a converged infrastructure solution that brings the benefits of an all-flash storage platform to your converged infrastructure deployments. Built on best of breed components from Cisco and Pure Storage, FlashStack provides a converged infrastructure solution that is simple, flexible, efficient, and costs less than legacy converged infrastructure solution based on traditional disk. FlashStack is designed to increase IT responsiveness to business demands while reducing the overall cost of computing. FlashStack components are integrated and standardized to help you achieve timely, repeatable, consistent deployments.

FlashStack embraces the latest technology and efficiently simplifies the data center workloads that redefine the way IT delivers value:

- Better performance (3min HANA reload times, 2.3x data reduction) – Faster time to deployment, fully tested, validated, and documented for rapid deployment and reduced management complexity.
- 54 percent lower storage cost (IDC) – Lowers overall IT costs by dramatic savings in power, cooling, and space with 100 percent Flash storage.
- Scales easily without disruption – Consolidate hundreds of enterprise-class applications in a single rack.
- Delivers flexibility to support your most intensive workloads – Suitable for both SAP and associated workloads such as Big Data and real-time Analytics.
- Integrated, holistic system and data management across your entire infrastructure whether on-premise, in a Cloud, or a hybrid combination of both.
- Purity//FA’s Evergreen solution allows customers to move storage costs from CapEx to OpEx with consumption-based pricing and cloud-like flexibility, even on-prem. Storage never goes out of date and you never run short of capacity.
- IDC confirms – no unplanned downtime – Reduces operational risk – Highly available, six 9’s architecture with no single point of failure, non-disruptive operations, and no downtime.
Solution Overview

Introduction

The current industry trend in data center design is towards shared infrastructures featuring multi-tenant workload deployments. Cisco® and Pure Storage have partnered to deliver FlashStack, which uses best-in-class storage, server, and network components to serve as the foundation for a variety of workloads, enabling efficient architectural designs that can be quickly and confidently deployed. FlashStack solution provides the advantage of having the compute, storage, and network stack integrated with the programmability of Cisco Unified Computing System and the on-demand growth and expandability of Evergreen storage from Pure Storage. Users experience appliance-level simplicity with cloud-like efficiencies and economics while maintaining their SAP TDI-based re-deployment/re-use options as their landscape evolves.

SAP HANA is SAP SE’s implementation of in-memory database technology. The SAP HANA database combines transactional and analytical SAP workloads and hereby takes advantage of the low cost main memory (RAM), data-processing capabilities of multicore processors, and faster data access. SAP HANA offers a multi-engine, query-processing environment that supports relational data (with both row- and column-oriented physical representations in a hybrid engine) as well as a graph and text processing for semi-structured and unstructured data management within the same system. As an appliance, SAP HANA combines software components from SAP optimized for certified hardware. However, this solution has a preconfigured hardware set-up and preinstalled software package that is very inflexible and costly due to its dedicated SAP HANA hardware. In 2013, SAP introduced SAP HANA Tailored Datacenter Integration (TDI) option; TDI solution offers a more open and flexible way for integrating SAP HANA into the data center by reusing existing enterprise storage hardware, thereby reducing hardware costs. Competitor solutions often require “forklift replacements” which drive up user costs and reduce ROI. However SAP HANA TDI option enables organizations to run multiple SAP HANA production systems on a shared infrastructure. It also enables customers to run the SAP application servers and SAP HANA database hosted on the same infrastructure.

In this specific setup, the solution includes Windows File Services running on the FlashArray for the shared file system, providing out-of-the-box file sharing capabilities without compromise.

For more information about SAP HANA, see the SAP help portal: http://help.sap.com/hana/

The reference architecture detailed in this document highlights the resiliency, cost benefit, and ease of deployment of an SAP HANA Storage TDI solution. This document describes the infrastructure installation and configuration to run SAP HANA Storage TDI in the FlashStack environment. It also addresses two very important use cases namely Scale-Up and Scale-Out system installation and configuration.

Audience

The target audience for this document includes, but is not limited to, storage administrators, data center architects, database administrators, field consultants, IT managers, SAP solution architects and customers who want to implement SAP HANA on FlashStack Converged Infrastructure solution. A working knowledge of SAP HANA Database, Linux, server, storage, networks is assumed but is not a prerequisite to read this document.

Goals and Objectives of this Document

SAP HANA TDI deployments are complicated and generally mission critical with high availability requirements. Customers face challenges maintaining these landscapes both in terms of time, available resources and operational cost.
The goal of this CVD is to show case the scalability, manageability and simplicity of the FlashStack Converged Infrastructure solution for deploying SAP HANA mission critical applications.

The following are the objectives of this reference architecture document:

1. Provide reference architecture design guidelines for the FlashStack based SAP HANA implementation.
2. Implement and validate SAP HANA single-node Scale-Up and 3+1 Scale-Out system design.

FlashStack System Overview

The FlashStack platform, is a flexible, integrated infrastructure solution that delivers pre-validated storage, networking, and server technologies. Cisco and Pure Storage have carefully validated and verified the FlashStack architecture and its many use cases while creating a portfolio of detailed documentation, information, and references to assist customers in transforming their data centers to this shared infrastructure model.

This portfolio includes, but is not limited to, the following items:

- Best practice architectural design
- Implementation and deployment instructions and provide application sizing based on the results

As shown in Figure 1, these components are connected and configured according to best practices of both Cisco and Pure Storage and provide the ideal platform for running a variety of enterprise workloads with confidence. FlashStack can scale up for greater performance and capacity (adding compute, network, or storage resources individually as needed), or it can scale out for environments that require multiple consistent deployments.

The reference architecture covered in this document leverages the Pure Storage FlashArray//X, Cisco Nexus 9000 series and Cisco MDS 9100 series for the switching element and Cisco Fabric Interconnects 6300 series for System Management. As shown in Figure 1, FlashStack Architecture can maintain consistency at scale. Each of the component families shown in (Cisco UCS, Cisco Nexus, Cisco MDS, Cisco FI and Pure Storage) offers
platform and resource options to scale the infrastructure up or down, while supporting the same features and functionality that are required under the configuration and connectivity best practices of FlashStack.

Design Principles

The FlashStack for SAP HANA solution addresses the following primary design principles:

- **Repeatable**: Create a scalable building block that can be easily replicated at any customer site. Publish the version of various firmware under test and weed out any issues in the lab before customers deploy this solution.

- **Available**: Create a design that is resilient and not prone to failure of a single component. For example, we include best practices to enforce multiple paths to storage, multiple NICs for connectivity, and high availability (HA) clustering.

- **Efficient**: Take advantage of inline data reduction, higher bandwidth and low latency of the Pure Storage FlashArray//m used in the FlashStack solution.

- **Simple**: Avoid unnecessary and/or complex tweaks to make the results look better than a normal out-of-box environment.

FlashStack Solution Benefits

Key Benefits of the FlashStack solution are:

- **Consistent Performance and Scalability**
 - Consistent sub-millisecond latency with 100 percent flash storage
 - Consolidate hundreds of enterprise-class applications in a single rack
 - Scalability through a design for hundreds of discrete servers and thousands of virtual machines, and the capability to scale I/O bandwidth to match demand without disruption
 - Repeatable growth through multiple FlashStack CI deployments

- **Operational Simplicity**
 - Fully tested, validated, and documented for rapid deployment
 - Reduced management complexity
 - No storage tuning or tiers necessary
 - Auto-aligned 512b architecture eliminates storage alignment headaches

- **Improved TCO**
 - Dramatic savings in power, cooling and space with Cisco UCS and 100 percent Flash Industry leading data reduction

- **Enterprise Grade Resiliency**
 - Highly available architecture and redundant components
 - Non-disruptive operations
— Upgrade and expand without downtime or performance loss
— Native data protection: snapshots and replication

Cisco and Pure Storage have also built a robust and experienced support team focused on FlashStack solutions, from customer account and technical sales representatives to professional services and technical support engineers. The support alliance between Pure Storage and Cisco gives customers and channel services partners direct access to technical experts who collaborate with cross vendors and have access to shared lab resources to resolve potential issues.
Infrastructure Requirements for the SAP HANA Database

There are hardware and software requirements defined by SAP to run SAP HANA systems in Tailored Datacenter Integration (TDI) option. This Cisco Validated Design uses guidelines provided by SAP.

Additional information is available at: http://saphana.com

CPU

SAP HANA2.0 (TDI) supports servers equipped with Intel Xeon processor E7-8880v3, E7-8890v3, E7-8880v4, E7-8890v4 and all Skylake CPU’s > 8 cores. In addition, the Intel Xeon processor E5-26xx v4 is supported for scale-up systems with the SAP HANA TDI option.

Memory

SAP HANA is supported in the following memory configurations:

- Homogenous symmetric assembly of dual in-line memory modules (DIMMs) for example, DIMM size or speed should not be mixed
- Maximum use of all available memory channels
- SAP HANA 2.0 Memory per socket up to 768 GB for SAP NetWeaver Business Warehouse (BW) and DataMart
- SAP HANA 2.0 Memory per socket up to 1536 GB for SAP Business Suite on SAP HANA (SoH) on 2- or 4-socket server

CPU and Memory Combinations

SAP HANA allows for a specific set of CPU and memory combinations. Table 1 lists the certified Cisco UCS servers for SAP HANA with supported Memory and CPU configuration for different use cases.

<table>
<thead>
<tr>
<th>Cisco UCS Server</th>
<th>CPU</th>
<th>Supported Memory</th>
<th>Scale UP/Suite on HANA</th>
<th>Scale-Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco UCS B200 M5</td>
<td>2 x Intel Xeon</td>
<td>128 GB to 1.5 TB BW 128 GB to 3 TB for SoH</td>
<td>Supported</td>
<td>Not supported</td>
</tr>
<tr>
<td>Cisco UCS C220 M5</td>
<td>2 x Intel Xeon</td>
<td>128 GB to 1.5 TB BW 128 GB to 3 TB for SoH</td>
<td>Supported</td>
<td>Not supported</td>
</tr>
<tr>
<td>Cisco UCS C240 M5</td>
<td>2 x Intel Xeon</td>
<td>128 GB to 1.5 TB BW 128 GB to 3 TB for SoH</td>
<td>Supported</td>
<td>Not supported</td>
</tr>
<tr>
<td>Cisco UCS B480 M5</td>
<td>4 x Intel Xeon</td>
<td>256 GB to 3 TB for BW 256 GB to 6 TB for SoH</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>Cisco UCS C480 M5</td>
<td>4 x Intel Xeon</td>
<td>256 GB to 3 TB for BW 256 GB to 6 TB for SoH</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>Cisco C880 M5</td>
<td>8x Intel Xeon</td>
<td>3TB – 6TB for BW 3TB – 12TB for SoH</td>
<td>Supported</td>
<td>Supported</td>
</tr>
</tbody>
</table>
Network

A SAP HANA data center deployment can range from a database running on a single host to a complex distributed system. Distributed systems can get complex with multiple hosts located at a primary site having one or more secondary sites, supporting a distributed multi-terabyte database with full fault and disaster recovery.

SAP HANA has different types of network communication channels to support the different SAP HANA scenarios and setups:

- **Client zone**: Channels used for external access to SAP HANA functions by end-user clients, administration clients, and application servers, and for data provisioning through SQL or HTTP.
- **Internal zone**: Channels used for SAP HANA internal communication within the database or, in a distributed scenario, for communication between hosts.
- **Storage zone**: Channels used for storage access (data persistence) and for backup and restore procedures.

Table 2 lists all the networks defined by SAP or Cisco or requested by customers.

<table>
<thead>
<tr>
<th>Name</th>
<th>Use Case</th>
<th>Solutions</th>
<th>Bandwidth requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client Zone Networks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application Server Network</td>
<td>SAP Application Server to DB communication</td>
<td>All</td>
<td>10 or 40 GbE</td>
</tr>
<tr>
<td>Client Network</td>
<td>User / Client Application to DB communication</td>
<td>All</td>
<td>10 or 40 GbE</td>
</tr>
<tr>
<td>Data Source Network</td>
<td>Data import and external data integration</td>
<td>Optional for all SAP HANA systems</td>
<td>10 or 40 GbE</td>
</tr>
<tr>
<td>Internal Zone Networks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inter-Node Network</td>
<td>Node to node communication within a scale-out configuration</td>
<td>Scale-Out</td>
<td>40 GbE</td>
</tr>
<tr>
<td>System Replication Network</td>
<td>For SAP HANA Disaster Tolerance</td>
<td></td>
<td>TBD with Customer</td>
</tr>
<tr>
<td>Storage Zone Networks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Backup Network</td>
<td>Data Backup</td>
<td>Optional for all SAP HANA systems</td>
<td>10 or 40 GbE</td>
</tr>
<tr>
<td>Storage Network</td>
<td>Node to Storage communication</td>
<td>All</td>
<td>40 GbE</td>
</tr>
<tr>
<td>Infrastructure Related Networks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Administration Network</td>
<td>Infrastructure and SAP HANA administration</td>
<td>Optional for all SAP HANA systems</td>
<td>1 GbE</td>
</tr>
<tr>
<td>Boot Network</td>
<td>Boot the Operating Systems via PXE/NFS or iSCSI</td>
<td>Optional for all SAP HANA systems</td>
<td>40 GbE</td>
</tr>
</tbody>
</table>

Details about the network requirements for SAP HANA are available in the white paper from SAP SE at: http://www.saphana.com/docs/DOC-4805.
The network needs to be properly segmented and must be connected to the same core/backbone switch as shown in Figure 2 based on your customer’s high-availability and redundancy requirements for different SAP HANA network segments.

Figure 2 High-Level SAP HANA Network Overview

High-Level SAP HANA Network Overview

Based on the listed network requirements, every server must be equipped with 2x 10 Gigabit Ethernet for scale-up systems to establish the communication with the application or user (Client Zone) and a 10 GbE Interface for Storage access.

For Scale-Out solutions, an additional redundant network for SAP HANA node to node communication with 10 GbE is required (Internal Zone).

For more information on SAP HANA Network security, refer to the SAP HANA Security Guide.

Storage

As an in-memory database, SAP HANA uses storage devices to save a copy of the data, for the purpose of startup and fault recovery without data loss. The choice of the specific storage technology is driven by various requirements like size, performance and high availability. To use Storage system in the Tailored Datacenter Integration option, the storage must be certified for SAP HANA TDI option at: https://www.sap.com/dmc/exp/2014-09-02-hana-hardware/enEN/enterprise-storage.html.

All relevant information about storage requirements is documented in this white paper: https://www.sap.com/documents/2015/03/74cdb554-5a7c-0010-82c7-ed71af511fa.html.

SAP can only support performance related SAP HANA topics if the installed solution has passed the validation test successfully.

Refer to section SAP HANA Hardware Configuration Check Tool for Tailored Data Center Integration of the SAP HANA Administration Guide for more information.
Filesystem Layout

Figure 3 illustrates the file system layout and the required storage sizes to install and operate SAP HANA. For the Linux OS installation (/root) 10 GB of disk size is recommended. Additionally, 50 GB must be provided for the /usr/sap since the volume used for SAP software that supports SAP HANA.

While installing SAP HANA on a host, specify the mount point for the installation binaries (/hana/shared/<sid>), data files (/hana/data/<sid>) and log files (/hana/log/<sid>), where sid is the instance identifier of the SAP HANA installation.

Figure 3 File System Layout for 2 Node Scale-Out System

The storage sizing for filesystem is based on the amount of memory equipped on the SAP HANA host.

Below is a sample filesystem size for a single system appliance configuration:

Root-FS: 100 GB inclusive of space required for /usr/sap

/hana/shared: 1x RAM or 1TB whichever is less

/hana/data: 1 x RAM

/hana/log: ½ of the RAM size for systems <= 256GB RAM and min ½ TB for all other systems

With a distributed installation of SAP HANA Scale-Out, each server will have the following:

Root-FS: 100 GB inclusive of space required for /usr/sap

The installation binaries, trace and configuration files are stored on a shared filesystem, which should be accessible for all hosts in the distributed installation. The size of shared filesystem should be 1 X RAM of a worker node for each 4 nodes in the cluster. For example, in a distributed installation with three hosts with 512 GB of
memory each, shared file system should be $1 \times 512 \text{ GB} = 512 \text{ GB}$, for 5 hosts with 512 GB of memory each, shared file system should be $2 \times 512 \text{ GB} = 1024 \text{ GB}$.

For each SAP HANA host there should be a mount point for data and log volume. The size of the file system for data volume with TDI option is one times the host memory:

 /hana/data/<sid>/mntXXXXX: 1x RAM

For solutions based on Intel Skylake 81XX CPU the size of the Log volume must be as follows:

- Half of the server RAM size for systems with $\leq 512 \text{ GB}$ RAM
- 512 GB for systems with $> 512 \text{ GB}$ RAM

Operating System

The supported operating systems for SAP HANA are as follows:

- SUSE Linux Enterprise Server for SAP Applications
- RedHat Enterprise Linux for SAP HANA

High Availability

The infrastructure for a SAP HANA solution must not have single point of failure. To support high-availability, the hardware and software requirements are:

- Internal storage: A RAID-based configuration is preferred
- External storage: Redundant data paths, dual controllers, and a RAID-based configuration are required
- Ethernet switches: Two or more independent switches should be used

SAP HANA Scale-Out comes with in integrated high-availability function. If a SAP HANA system is configured with a stand-by node, a failed part of SAP HANA will start on the stand-by node automatically. For automatic host failover, storage connector API must be properly configured for the implementation and operation of the SAP HANA.

For detailed information from SAP see: http://saphana.com or http://service.sap.com/notes.
Cisco Unified Computing System

Cisco Unified Computing System™ is a next-generation data center platform that unites compute, network, storage access, and virtualization into a cohesive system designed to reduce total cost of ownership (TCO) and increase business agility. The system integrates a low-latency, lossless 10 and 40 Gigabit Ethernet unified network fabric with enterprise-class, x86-architecture servers. The system is an integrated, scalable, multi-chassis platform in which all resources participate in a unified management domain. Cisco UCS is a next-generation solution for blade and rack server computing.

Cisco UCS unites the following main components:

- **Computing**

 The system is based on an entirely new class of computing system that incorporates rack mount and blade servers based on Intel Xeon Processor E5 and E7. The Cisco UCS Servers offer the patented Cisco Extended Memory Technology to support applications with large datasets and allow more virtual machines per server.

- **Network**

 The system is integrated onto a low-latency, lossless, 10 and 40-Gbps unified network fabric. This network foundation consolidates LAN, SAN and high-performance computing networks which are separate networks today. The unified fabric lowers costs by reducing the number of network adapters, switches, and cables, and by decreasing the power and cooling requirements.

- **Virtualization**

 The system unleashes the full potential of virtualization by enhancing the scalability, performance, and operational control of virtual environments. Cisco security, policy enforcement, and diagnostic features are now extended into virtualized environments to better support changing business and IT requirements.
Technology Overview

- **Storage Access**

 The system provides consolidated access to both SAN storage and Network Attached Storage (NAS) over the unified fabric. By unifying the storage access, the Cisco Unified Computing System can access storage over Ethernet (NFS or iSCSI) and Fibre Channel over Ethernet (FCoE). This provides customers with choice for storage access and investment protection. In addition, the server administrators can pre-assign storage-access policies for system connectivity to storage resources, simplifying storage connectivity, and management for increased productivity.

- **Management**

 The system uniquely integrates all system components to enable the entire solution to be managed as a single entity by the Cisco UCS Manager. The Cisco UCS Manager has an intuitive graphical user interface (GUI), a command-line interface (CLI), and a powerful scripting library module for Microsoft PowerShell built on a robust application programming interface (API) to manage all system configuration and operations.

 Cisco UCS fuses access layer networking and servers. This high-performance, next-generation server system provides a data center with a high degree of workload agility and scalability. Cisco UCS accelerates the delivery of new services simply, reliably, and securely through end-to-end provisioning and migration support for both virtualized and non-virtualized systems.

Cisco Unified Computing System Components

- **Cisco UCS 6300 Series Fabric Interconnects**

 Cisco UCS 6300 Series Fabric Interconnects provides line-rate, low-latency, lossless, 10 and 40-Gigabit Ethernet (varies by model) and Fibre Channel over Ethernet (FCoE). Cisco UCS 6300 Series Fabric provides management and communication backbone for Cisco UCS B-Series Blade Servers, Cisco UCS 5100 Series Blade Server Chassis, Cisco UCS C-Series Rack Servers.

- **Cisco UCS 5100 Series Blade Server Chassis**

 Cisco UCS 5108 Blade Server Chassis is a six rack units (6RU) high, can mount in an industry-standard 19-inch rack, and uses standard front-to-back cooling. A chassis can accommodate up to eight half-width, or four full-width Cisco UCS B-Series Blade Servers form factors within the same chassis.

- **Cisco UCS 2300 Series Fabric Extender**

 Cisco UCS 2300 series Fabric Extender brings the unified fabric into the blade server enclosure, providing multiple 10 and 40 Gigabit Ethernet connections between blade servers and the fabric interconnect, simplifying diagnostics, cabling, and management.

- **Cisco UCS B-Series Blade Servers and C Series Rack Servers**

 Cisco UCS B-Series Blade Servers and C Series Rack Servers
Based on Intel® Xeon® processor E7 and E5 product families and the latest Skylake processors, Cisco UCS Servers work with virtualized and non-virtualized applications to increase:

- Performance
- Energy efficiency
- Flexibility
- Administrator productivity

Cisco UCS Adapters

The Cisco Unified Computing System supports Converged Network Adapters (CNAs) obviate the need for multiple network interface cards (NICs) and host bus adapters (HBAs) by converging LAN and SAN traffic in a single interface.

Cisco UCS Manager

Streamline many of your most time-consuming daily activities, including configuration, provisioning, monitoring, and problem resolution with Cisco UCS Manager. It reduces TCO and simplifies daily operations to generate significant savings.

Cisco Nexus 9000 Series Switches

The 9000 Series offers modular 9500 switches and fixed 9300 and 9200 switches with 1/10/25/50/40/100 Gigabit Ethernet switch configurations. 9200 switches are optimized for high performance and density in NX-OS mode operations.

Cisco MDS 9100 Series Multilayer Fabric Switches

The Cisco MDS 9100 Series Multilayer Fabric Switches consists of Cisco MDS 9148S, a 48-port, 16 Gbps Fibre Channel switch, and the Cisco MDS 9148, a 48-port 8 Gbps Fibre Channel switch.

Cisco UCS Manager

Cisco UCS Manager (UCSM) provides unified, centralized, embedded management of all Cisco UCS software and hardware components across multiple chassis and thousands of virtual machines. Administrators use the software to manage the entire Cisco UCS as a single logical entity through an intuitive GUI, a command-line interface (CLI), or an XML API.

Cisco UCS Manager manages Cisco UCS systems through an intuitive HTML 5 or Java user interface and a command-line interface (CLI) enabling centralized management of distributed systems scaling to thousands of
servers. Cisco UCS Manager is embedded on a pair of Cisco UCS 6300 Series Fabric Interconnects using a clustered, active–standby configuration for high availability. The manager gives administrators a single interface for performing server provisioning, device discovery, inventory, configuration, diagnostics, monitoring, fault detection, auditing, and statistics collection.

Cisco UCS management software provides a model–based foundation for streamlining the day-to-day processes of updating, monitoring, and managing computing resources, local storage, storage connections, and network connections. By enabling better automation of processes, Cisco UCS Manager allows IT organizations to achieve greater agility and scale in their infrastructure operations while reducing complexity and risk.

Cisco UCS Manager provides an easier, faster, more flexible, and unified solution for managing firmware across the entire hardware stack than traditional approaches to server firmware provisioning. Using service profiles, administrators can associate any compatible firmware with any component of the hardware stack. After the firmware versions are downloaded from Cisco, they can be provisioned within minutes on components in the server, fabric interconnect, and fabric extender based on the required network, server, and storage policies for each application and operating system. The firmware’s auto-installation capability simplifies the upgrade process by automatically sequencing and applying upgrades to individual system elements.

Some of the key elements managed by Cisco UCS Manager include:

- Cisco UCS Integrated Management Controller (IMC) firmware
- RAID controller firmware and settings
- BIOS firmware and settings, including server universal user ID (UUID) and boot order
- Converged network adapter (CNA) firmware and settings, including MAC addresses and worldwide names (WWNs) and SAN boot settings
- Virtual port groups used by virtual machines, using Cisco Data Center VM–FEX technology
- Interconnect configuration, including uplink and downlink definitions, MAC address and WWN pinning, VLANs, VSANs, quality of service (QoS), bandwidth allocations, Cisco Data Center VM–FEX settings, and Ether Channels to upstream LAN switches

Cisco UCS Manager provides end-to-end management of all the devices in the Cisco UCS domain it manages. Devices that are uplinked from the fabric interconnect must be managed by their respective management applications.

Cisco UCS Manager is provided at no additional charge with every Cisco UCS platform.

For more information on Cisco UCS Manager, see:

Cisco UCS Service Profile

Service profiles are essential to the automation functions in Cisco UCS Manager. They provision and manage Cisco UCS systems and their I/O properties within a Cisco UCS domain. Infrastructure policies are created by server, network, and storage administrators and are stored in the Cisco UCS Fabric Interconnects. The infrastructure policies needed to deploy applications are encapsulated in the service profiles templates, which are collections of policies needed for the specific applications. The service profile templates are then used to create one or more service profiles, which provide the complete definition of the server. The policies coordinate and automate element management at every layer of the hardware stack, including RAID levels, BIOS settings,
firmware revisions and settings, server identities, adapter settings, VLAN and VSAN network settings, network quality of service (QoS), and data center connectivity.

A server’s identity is made up of many properties such as UUID, boot order, IPMI settings, BIOS firmware, BIOS settings, RAID settings, disk scrub settings, number of NICs, NIC speed, NIC firmware, MAC and IP addresses, number of HBAs, HBA WWNs, HBA firmware, FC fabric assignments, QoS settings, VLAN assignments, remote keyboard/video/monitor etc. I think you get the idea. It’s a LONG list of “points of configuration” that need to be configured to give this server its identity and make it unique from every other server within your data center. Some of these parameters are kept in the hardware of the server itself (like BIOS firmware version, BIOS settings, boot order, FC boot settings, etc.) while some settings are kept on your network and storage switches (like VLAN assignments, FC fabric assignments, QoS settings, ACLs, etc.). This results in following server deployment challenges:

- Every deployment requires coordination among server, storage, and network teams
- Need to ensure correct firmware and settings for hardware components
- Need appropriate LAN and SAN connectivity

The service profile consists of a software definition of a server and the associated LAN and SAN connectivity that the server requires. When a service profile is associated with a server, Cisco UCS Manager automatically configures the server, adapters, fabric extenders, and fabric interconnects to match the configuration specified in the service profile. Service profiles improve IT productivity and business agility because they establish the best practices of your subject-matter experts in software. With service profiles, infrastructure can be provisioned in minutes instead of days, shifting the focus of IT staff from maintenance to strategic initiatives. Service profiles enable pre-provisioning of servers, enabling organizations to configure new servers and associated LAN and SAN access settings even before the servers are physically deployed.

Cisco UCS Service Profiles contain values for a server’s property settings, including virtual network interface cards (vNICs), MAC addresses, boot policies, firmware policies, fabric connectivity, external management, and HA information. By abstracting these settings from the physical server into a Cisco Service Profile, the Service Profile can then be deployed to any physical compute hardware within the Cisco UCS domain. Furthermore, Service Profiles can, at any time, be migrated from one physical server to another. This logical abstraction of the server personality separates the dependency of the hardware type or model and is a result of Cisco’s unified fabric model (rather than overlaying software tools on top).
Compute, LAN, SAN Seamlessly Through Software

Service profiles benefit both virtualized and non-virtualized environments. Workloads may need to be moved from one server to another to change the hardware resources assigned to a workload or to take a server offline for maintenance. Service profiles can be used to increase the mobility of non-virtualized servers. They also can be used in conjunction with virtual clusters to bring new resources online easily, complementing existing virtual machine mobility. Service profiles are also used to enable Cisco Data Center Virtual Machine Fabric Extender (VM-FEX) capabilities for servers that will run hypervisors enabled for VM-FEX.

Cisco UCS has uniquely addressed these challenges with the introduction of service profiles that enables integrated, policy based infrastructure management. Cisco UCS Service Profiles hold the DNA for nearly all configurable parameters required to set up a physical server. A set of user defined policies (rules) allow quick, consistent, repeatable, and secure deployments of Cisco UCS servers.

This innovation is still unique in the industry despite competitors claiming to offer similar functionality. In most cases, these vendors must rely on several different methods and interfaces to configure these server settings. Furthermore, Cisco is the only hardware provider to offer a truly unified management platform, with Cisco UCS Service Profiles and hardware abstraction capabilities extending to both blade and rack servers.
Some of key features and benefits of Cisco UCS service profiles are detailed below:

Service profiles and templates. Service profile templates are stored in the Cisco UCS 6300 Series Fabric Interconnects for reuse by server, network, and storage administrators. Service profile templates consist of server requirements and the associated LAN and SAN connectivity. Service profile templates allow different classes of resources to be defined and applied to a number of resources, each with its own unique identities assigned from predetermined pools.

The Cisco UCS Manager can deploy the service profile on any physical server at any time. When a service profile is deployed to a server, the Cisco UCS Manager automatically configures the server, adapters, fabric extenders, and fabric interconnects to match the configuration specified in the service profile. A service profile template parameterizes the UIDs that differentiate between server instances.

This automation of device configuration reduces the number of manual steps required to configure servers, Network Interface Cards (NICs), Host Bus Adapters (HBAs), and LAN and SAN switches.

Service profile templates are used to simplify the creation of new service profiles, helping ensure consistent policies within the system for a given service or application. Whereas a service profile is a description of a logical server and there is a one-to-one relationship between the profile and the physical server, a service profile template can be used to define multiple servers. The template approach enables you to configure hundreds of servers with thousands of virtual machines as easily as you can configure one server. This automation reduces the number of manual steps needed, helping reduce the opportunities for human error, improve consistency, and further reducing server and network deployment times.

Programmatically deploying server resources. Cisco UCS Manager provides centralized management capabilities, creates a unified management domain, and serves as the central nervous system of the Cisco UCS. Cisco UCS Manager is embedded device management software that manages the system from end-to-end as a single logical entity through an intuitive GUI, CLI, or XML API. Cisco UCS Manager implements role- and policy-based management using service profiles and templates. This construct improves IT productivity and business agility.
Now infrastructure can be provisioned in minutes instead of days, shifting IT’s focus from maintenance to strategic initiatives.

Dynamic provisioning. Cisco UCS resources are abstract in the sense that their identity, I/O configuration, MAC addresses and WWNs, firmware versions, BIOS boot order, and network attributes (including QoS settings, ACLs, pin groups, and threshold policies) all are programmable using a just-in-time deployment model. A service profile can be applied to any blade server to provision it with the characteristics required to support a specific software stack. A service profile allows server and network definitions to move within the management domain, enabling flexibility in the use of system resources. Service profile templates allow different classes of resources to be defined and applied to a number of resources, each with its own unique identities assigned from predetermined pools.

Cisco UCS 6300 Unified Fabric Interconnects

The Cisco UCS 6300 Series Fabric Interconnects are a core part of Cisco UCS, providing both network connectivity and management capabilities for the system. The Cisco UCS 6300 Series offers line-rate, low-latency, lossless 10 and 40 Gigabit Ethernet, Fibre Channel over Ethernet (FCoE), and Fibre Channel functions.

The Cisco UCS 6300 Series provides the management and communication backbone for the Cisco UCS B-Series Blade Servers, 5100 Series Blade Server Chassis, and C-Series Rack Servers managed by Cisco UCS. All servers attached to the fabric interconnects become part of a single, highly available management domain. In addition, by supporting unified fabric, the Cisco UCS 6300 Series provides both LAN and SAN connectivity for all servers within its domain.

From a networking perspective, the Cisco UCS 6300 Series uses a cut-through architecture, supporting deterministic, low-latency, line-rate 10 and 40 Gigabit Ethernet ports, switching capacity of 2.56 terabits per second (Tbps), and 320 Gbps of bandwidth per chassis, independent of packet size and enabled services. The product family supports Cisco® low-latency, lossless 10 and 40 Gigabit Ethernet unified network fabric capabilities, which increase the reliability, efficiency, and scalability of Ethernet networks. The fabric interconnect supports multiple traffic classes over a lossless Ethernet fabric from the server through the fabric interconnect. Significant TCO savings can be achieved with an FCoE optimized server design in which network interface cards (NICs), host bus adapters (HBAs), cables, and switches can be consolidated.

Lower Total Cost of Ownership

The Cisco UCS 6300 Series offers several key features and benefits that can lower TCO. Some examples include:

- Bandwidth up to 2.56 Tbps
- Centralized unified management with Cisco UCS Manager software
Highly Scalable Architecture

Cisco Fabric Extender technology scales up to 20 chassis in just one unified system without additional complexity. The result is that customers can eliminate dedicated chassis management and blade switches, as well as reduce cabling.

Cisco UCS 6300 Series Fabric Interconnect Models

Cisco UCS 6332 and 6332-16UP Fabric Interconnects

These top-of-rack (ToR) switches manage domains of up to 160 servers.

Table 3 Fabric Interconnect Specifications

<table>
<thead>
<tr>
<th>Feature</th>
<th>FI 6332</th>
<th>FI 6332-16UP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>1 RU</td>
<td>1 RU</td>
</tr>
<tr>
<td>Physical Ports</td>
<td>32</td>
<td>40</td>
</tr>
<tr>
<td>Max 10G Ports</td>
<td>98</td>
<td>88</td>
</tr>
<tr>
<td>Max 40G Ports</td>
<td>32</td>
<td>24</td>
</tr>
<tr>
<td>Max FC Ports</td>
<td>0</td>
<td>16 x 4/8/16 G</td>
</tr>
<tr>
<td>Unified Ports</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>Default Port Licenses</td>
<td>8</td>
<td>4/24, 8/16 UP</td>
</tr>
</tbody>
</table>

Figure 8 Cisco UCS 6332-16UP Fabric Interconnect

For this SAP HANA solution we have used FI 6332-16UP. As shown in Figure 8, FI 6332-16UP is a one-rack-unit (1RU) 40 Gigabit Ethernet/FCoE switch and 1/10 Gigabit Ethernet, FCoE and Fiber Channel switch offering up to 2.24 Tbps throughput and up to 40 ports. The switch has 24 40Gbps fixed Ethernet/FCoE ports and 16 1/10Gbps Ethernet/FCoE or 4/8/16G Fiber Channel ports. This Fabric Interconnect is targeted for FC storage deployments requiring high performance 16G FC connectivity to MDS switches.
Cisco UCS 2304XP Fabric Extender

The Cisco UCS 2304 Fabric Extender has four 40 Gigabit Ethernet, FCoE-capable, Quad Small Form-Factor Pluggable (QSFP+) ports that connect the blade chassis to the fabric interconnect. Each Cisco UCS 2304 has four 40 Gigabit Ethernet ports connected through the midplane to each half-width slot in the chassis. Typically configured in pairs for redundancy, two fabric extenders provide up to 320 Gbps of I/O to the chassis.

Cisco UCS Blade Chassis

The Cisco UCS 5100 Series Blade Server Chassis is a crucial building block of Cisco Unified Computing System, delivering a scalable and flexible blade server.

The Cisco UCS 5108 Blade Server Chassis is six rack units (6RU) high and can mount in an industry standard 19-inch rack. A single chassis can house up to eight half-width Cisco UCS B-Series Blade Servers and can accommodate both half-width and full-width blade form factors. Four hot-swappable power supplies are accessible from the front of the chassis, and single-phase AC, -48V DC, and 200 to 380V DC power supplies and chassis are available. These power supplies are up to 94 percent efficient and meet the requirements for the 80 Plus Platinum rating. The power subsystem can be configured to support nonredundant, N+1 redundant, and grid-redundant configurations. The rear of the chassis contains eight hot-swappable fans, four power connectors (one per power supply), and two I/O bays that can support either Cisco UCS 2000 Series Fabric Extenders or the Cisco UCS 6324 Fabric Interconnect. A passive midplane provides up to 80 Gbps of I/O bandwidth per server slot and up to 160 Gbps of I/O bandwidth for two slots.

The Cisco UCS Blade Server Chassis is shown in Figure 10.

Cisco UCS B480 M5 Blade Server

The enterprise-class Cisco UCS B480 M5 Blade Server delivers market-leading performance, versatility, and density without compromise for memory-intensive mission-critical enterprise applications and virtualized workloads, among others. With the Cisco UCS B480 M5, you can quickly deploy stateless physical and virtual workloads with the programmability that Cisco UCS Manager and Cisco® SingleConnect technology enable.

The Cisco UCS B480 M5 is a full-width blade server supported by the Cisco UCS 5108 Blade Server Chassis. The Cisco UCS 5108 chassis and the Cisco UCS B-Series Blade Servers provide inherent architectural advantages:
Through Cisco UCS, gives you the architectural advantage of not having to power, cool, manage, and purchase excess switches (management, storage, and networking), Host Bus Adapters (HBAs), and Network Interface Cards (NICs) in each blade chassis.

- Reduces the Total Cost of Ownership by removing management modules from the chassis, making the chassis stateless.
- Provides a single, highly available Cisco Unified Computing System™ management domain for all system chassis and rack servers, reducing administrative tasks.

The Cisco UCS B480 M5 Blade Server offers:

- Four Intel® Xeon® Scalable CPUs (up to 28 cores per socket)
- 2666-MHz DDR4 memory and 48 DIMM slots with up to 6 TB using 128-GB DIMMs
- Cisco FlexStorage® storage subsystem
- Five mezzanine adapters and support for up to four GPUs
- Cisco UCS Virtual Interface Card (VIC) 1340 modular LAN on Motherboard (mLOM) and upcoming fourth-generation VIC mLOM
- Internal Secure Digital (SD) and M.2 boot options

Figure 11 Cisco UCS B480 M5 Blade Server

Cisco VIC Interface Card

The Cisco UCS blade server has various Converged Network Adapters (CNA) options. The Cisco UCS Virtual Interface Card (VIC) 1340 is a 2-port 40-Gbps Ethernet or dual 4 x 10-Gbps Ethernet, Fibre Channel over Ethernet (FCoE)-capable modular LAN on motherboard (mLOM) designed exclusively for the Cisco UCS B-Series Blade Servers. When used in combination with an optional port expander, the Cisco UCS VIC 1340 capabilities is enabled for two ports of 40-Gbps Ethernet.

Figure 12 Cisco UCS 1340 VIC Card

The Cisco UCS VIC 1340 enables a policy-based, stateless, agile server infrastructure that can present over 256 PCIe standards-compliant interfaces to the host that can be dynamically configured as either network interface cards (NICs) or host bus adapters (HBAs). In addition, the Cisco UCS VIC 1340 supports Cisco® Data Center...
Virtual Machine Fabric Extender (VM-FEX) technology, which extends the Cisco UCS fabric interconnect ports to virtual machines, simplifying server virtualization deployment and management.

Cisco VIC 1380 Virtual Interface Card

The Cisco UCS Virtual Interface Card (VIC) 1380 is a dual-port 40-Gbps Ethernet, or dual 4 x 10 Fibre Channel over Ethernet (FCoE)-capable mezzanine card designed exclusively for the M5 generation of Cisco UCS B-Series Blade Servers. The card enables a policy-based, stateless, agile server infrastructure that can present over 256 PCIe standards-compliant interfaces to the host that can be dynamically configured as either network interface cards (NICs) or host bus adapters (HBAs). In addition, the Cisco UCS VIC 1380 supports Cisco® Data Center Virtual Machine Fabric Extender (VM-FEX) technology, which extends the Cisco UCS fabric interconnect ports to virtual machines, simplifying server virtualization deployment and management.

Cisco Nexus 9336C-FX2 Switches

Powered by cloud-scale technology, the Cisco Nexus 9336C-FX2 offers flexible port speeds supporting 1/10/25/40/100 Gbps in a compact 1 RU form factor. Designed to meet the changing needs of data centers, big data applications, and automated cloud environments, this powerful switch supports both Cisco ACI and standard Cisco Nexus switch environments (NX-OS mode). This grants you access to industry-leading programmability (Cisco NX-OS) and the most comprehensive automated, policy-based, systems-management approach (Cisco ACI). Cisco Nexus 9336-FX2 Switch

The Cisco Nexus 9336C-FX2 switch benefits are listed below:

Architectural Flexibility

- Support for Cisco ACI architecture and NX-OS
- All 36 ports support 10/25/40/100 Gbps QSFP28 and wire-rate MACsec encryption
- Supports 7.2 Tbps of bandwidth and over 2.8 bpps
Feature Rich

- Automated, policy-based systems management with Cisco ACI
- Build programmable SDN fabrics leveraging open APIs and over 65 Cisco ACI global technology partners
- Enhanced Cisco NX-OS Software designed for performance, resiliency, scalability, manageability, and programmability
- Real-time buffer utilization per port and per queue, for monitoring traffic micro-bursts and application traffic patterns

Cisco MDS 9148S 16G FC Switches

The Cisco® MDS 9148S 16G Multilayer Fabric Switch (Figure 15) is the next generation of the highly reliable, flexible, and low-cost Cisco MDS 9100 Series switches. It combines high performance with exceptional flexibility and cost effectiveness. This powerful, compact one rack-unit (1RU) switch scales from 12 to 48 line-rate 16 Gbps Fibre Channel ports.

![Cisco MDS 9148S 16G FC Switch](image)

The Cisco MDS 9148S is excellent for:

- A standalone SAN in small departmental storage environments
- A top-of-the-rack switch in medium-sized redundant fabrics
- An edge switch in enterprise data center core-edge topologies

The Cisco MDS 9148S is powered by Cisco NX-OS and Cisco Prime™ Data Center Network Manager (DCNM) software. It delivers advanced storage networking features and functions with ease of management and compatibility with the entire Cisco MDS 9000 Family portfolio for reliable end-to-end connectivity.

The Cisco MDS 9148S features and benefits are as below:

- Port speed: 2/4/8/16-Gbps autosensing with 16 Gbps of dedicated bandwidth per port
- Enhance reliability, speed problem resolution, and reduce service costs by using Fibre Channel ping and traceroute to identify exact path and timing of flows, as well as Cisco Switched Port Analyzer (SPAN) and Remote SPAN (RSPAN) and Cisco Fabric Analyzer to capture and analyze network traffic.
- Automate deployment and upgrade of software images.
- Reduce consumption of hardware resources and administrative time needed to create and manage zones.
- Optimize bandwidth utilization by aggregating up to 16 physical ISLs into a single logical Port-Channel bundle with multipath load balancing.
Pure Storage FlashArray //X R2

FlashArray//X R2 makes server and workload investments more productive, while also lowering storage spend. With FlashArray, organizations can dramatically reduce the complexity of storage to make IT more agile and efficient, accelerating your journey to the cloud.

FlashArray//X R2 performance can also make your business smarter by unleashing the power of real-time analytics, driving customer loyalty, and creating new, innovative customer experiences that simply weren’t possible with disk. All by Transforming Your Storage with FlashArray//X R2.

FlashArray//X R2 enables you to transform your data center, cloud, or entire business with an affordable all-flash array capable of consolidating and accelerating all your key applications.

Mini Size—Reduce power, space and complexity by 90 percent:

- 3U base chassis with 15-1500+ TBs usable
- ~1kW of power
- 6 cables

Mighty Performance—Transform your datacenter, cloud, or entire business:

- Up to 600,000 32K IOPS
- Up to 18.5 GB/s bandwidth
- <1ms average latency

Modular Scale—Scale FlashArray//X R2 inside and outside of the chassis for generations:

- Expandable to 3 PB usable via expansion shelves
- Upgrade controllers and drives to expand performance and/or capacity

Meaningful Simplicity—Appliance-like deployment with worry-free operations:

- Plug-and-go deployment that takes minutes, not days
- Non-disruptive upgrades and hot-swap everything
- Less parts = more reliability

The FlashArray//X R2 expands upon the FlashArray’s modular, stateless architecture, designed to enable expandability and upgradability for generations. The FlashArray//X R2 leverages a chassis-based design with
customizable modules, enabling both capacity and performance to be independently improved over time with advances in compute and flash, to meet your business’ needs today and tomorrow.

The Pure Storage FlashArray//X is ideal for:

Accelerating Databases and Applications
Speed transactions by 10x with consistent low latency, enable online data analytics across wide datasets, and mix production, analytics, dev/test, and backup workloads without fear.

Virtualizing and Consolidating Workloads
Easily accommodate the most I/O-hungry Tier 1 workloads, increase consolidation rates (thereby reducing servers), simplify VI administration, and accelerate common administrative tasks.

Delivering the Ultimate Virtual Desktop Experience
Support demanding users with better performance than physical desktops, scale without disruption from pilot to >1000’s of users, and experience all-flash performance.

Protecting and Recovering Vital Data Assets
Provide an always-on protection for business-critical data, maintain performance even under failure conditions, and recover instantly with FlashRecover.

Pure Storage FlashArray//X sets the benchmark for all-flash enterprise storage arrays. It delivers:

Consistent Performance
FlashArray delivers consistent <1ms average latency. Performance is optimized for the real-world applications workloads that are dominated by I/O sizes of 32K or larger vs. 4K/8K hero performance benchmarks. Full performance is maintained even under failures/updates.

Lower Cost than Disk
Inline de-duplication and compression deliver 5–10x space savings across a broad set of I/O workloads including Databases, Virtual Machines and Virtual Desktop Infrastructure.

Mission-Critical Resiliency
FlashArray delivers >99.9999% proven availability, as measured across the Pure Storage installed base and does so with non-disruptive everything without performance impact.

Disaster Recovery Built-In
FlashArray offers native, fully-integrated, data reduction-optimized backup and disaster recovery at no additional cost. Setup disaster recovery with policy-based automation within minutes. And, recover instantly from local, space-efficient snapshots or remote replicas.

Simplicity Built-In
FlashArray offers game-changing management simplicity that makes storage installation, configuration, provisioning and migration a snap. No more managing performance, RAID, tiers or caching. Achieve optimal application performance without any tuning at any layer. Manage the FlashArray the way you like it: Web-based GUI, CLI, VMware® vCenter, Rest API, or OpenStack.

Figure 16 FlashArray//X R2 Specifications
Purity Operating Environment

Purity implements advanced data reduction, storage management and flash management features, and all features of Purity are included in the base cost of the FlashArray//X R2.

Storage Software Built for Flash—The FlashCare technology virtualizes the entire pool of flash within the FlashArray, and allows Purity to both extend the life and ensure the maximum performance of consumer-grade MLC flash.

Granular and Adaptive—Purity Core is based upon a 512-byte variable block size metadata layer. This fine-grain metadata enables all of Purity’s data and flash management services to operate at the highest efficiency.

Best Data Reduction Available—FlashReduce implements five forms of inline and post-process data reduction to offer the most complete data reduction in the industry. Data reduction operates at a 512-byte aligned variable block size, to enable effective reduction across a wide range of mixed workloads without tuning.

Highly Available and Resilient—FlashProtect implements high availability, dual-parity RAID-HA, non-disruptive upgrades, and encryption, all of which are designed to deliver full performance to the FlashArray during any failure or maintenance event.

Backup and Disaster Recovery Built In—FlashRecover combines space-saving snapshots, replication, and protection policies into an end-to-end data protection and recovery solution that protects data against loss locally.
and globally. All FlashProtect services are fully-integrated in the FlashArray and leverage the native data reduction capabilities.

Purity//FA Pure1®

Pure1 Manage—By combining local web-based management with cloud-based monitoring, Pure1 Manage allows you to manage your FlashArray wherever you are – with just a web browser.

Pure1 Connect—A rich set of APIs, plugins, application connectors, and automation toolkits enable you to connect FlashArray//X R2 to all your data center and cloud monitoring, management, and orchestration tools.

Pure1 Support—FlashArray//X R2 is constantly cloud-connected, enabling Pure Storage to deliver the most proactive support experience possible. Highly trained staff combined with big data analytics help resolve problems before they start.

Pure1 Collaborate—Extend your development and support experience online, leveraging the Pure1 Collaborate community to get peer-based support, and to share tips, tricks, and scripts.

Experience Evergreen™ Storage

Get storage that behaves like SaaS and the cloud. Deploy it once and keep expanding and improving performance, capacity, density and/or features for 10 years or more – without downtime, performance impact, or data migrations. Our “Right Size” capacity guarantee ensures you get started knowing you will have the effective capacity you need. And our Capacity Consolidation program keeps your storage modern and dense as you expand. With Evergreen Storage, you will never re-buy a TB you already own.
Physical Topology

The SAP HANA on FlashStack provides an end-to-end architecture with Cisco Hardware and Pure Storage that demonstrates support for multiple SAP HANA workloads with high availability and redundancy. The architecture uses Cisco UCS managed Cisco UCS C-Series Servers. The C-Series Rack Servers are connected directly to Cisco UCS Fabric Interconnect with single-wire management feature, the data traffic between HANA servers and Storage will be contained in the Cisco UCS Fabric Interconnect. The FC storage access, management and zoning are provided by the Cisco MDS switches. The Ethernet traffic and uplink to customer network is handled by the Cisco Nexus switches.

Figure 17 shows the FlashStack for SAP HANA, described in this Cisco Validation Design. It highlights the Cisco UCS Integrated Infrastructure hardware components and the network connections.
Considerations

Scale
Although this is the base design, each of the components can be scaled easily to support specific business requirements. Additional servers or even blade chassis can be deployed to increase compute capacity without additional Network components.

Performance
The solution is designed to meet SAP HANA performance requirement defined by SAP SE. All the data traffic between HANA nodes is contained in the UCS Fabric Interconnect. Each HANA Server is equipped with a minimum of 1 x 40GbE capable Cisco Virtual Interface Cards, the storage network provides dedicated bandwidth between HANA servers and Storage Subsystem. For HANA node-to-node network, 40 Gb dedicated network bandwidth is provided with non-blocking mode.

Solution components and Software Revisions
This section describes the design considerations for the SAP HANA TDI deployment on FlashStack. Table 4 lists the inventory of the components used in the FlashStack solution.

Table 4 Inventory and Bill of Material of the Validation Setup

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Name</th>
<th>Version / Model</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco</td>
<td>Cisco Nexus 9336C-FX2 Switch</td>
<td>N9K-C9336C-FX2</td>
<td>Cisco Nexus 9300 Series Switches</td>
<td>2</td>
</tr>
<tr>
<td>Cisco</td>
<td>Cisco MDS 9148S 16G Fabric Switch</td>
<td>DS-C9148S-12PK9</td>
<td>Cisco MDS 9100 Series Multilayer Fabric Switches</td>
<td>2</td>
</tr>
<tr>
<td>Cisco</td>
<td>Cisco UCS 6332-16UP Fabric Interconnect</td>
<td>UCS-FI-6332-16UP</td>
<td>Cisco 6300 Series Fabric Interconnects</td>
<td>2</td>
</tr>
<tr>
<td>Cisco</td>
<td>Cisco UCS Fabric Extender</td>
<td>UCS-IOM–2304</td>
<td>Cisco UCS 2304XP I/O Module (4 External, 8 Internal 40Gb Ports)</td>
<td>4</td>
</tr>
<tr>
<td>Cisco</td>
<td>Cisco UCS B480 M5 blade servers</td>
<td>UCSB–B480–M5</td>
<td>Cisco UCS B-Series Blade Servers</td>
<td>4</td>
</tr>
<tr>
<td>Cisco</td>
<td>Cisco UCS VIC 1340 mLom / VIC 1380</td>
<td>UCSC–PCIE–C40Q–03</td>
<td>Cisco UCS VIC 1385 PCIE adapters for rack servers</td>
<td>8</td>
</tr>
<tr>
<td>Pure Storage</td>
<td>Pure FlashArray //X</td>
<td>FlashArray //X50 R2</td>
<td>Pure Storage FlashArray//X</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 5 lists the software revisions used for validating various components of the FlashStack for SAP HANA.

Table 5 Hardware and Software Components of the FlashStack for SAP HANA Validated in this Design Guide

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Product</th>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco</td>
<td>Cisco UCSM</td>
<td>3.2(3g)</td>
<td>Cisco UCS Manager</td>
</tr>
</tbody>
</table>
Configuration Guidelines

This information in this section is intended to enable you to fully configure the customer environment. In this process, various steps require you to insert customer-specific naming conventions, IP addresses, and VLAN schemes, as well as to record appropriate MAC addresses. Table 6 lists the configuration variables that are used throughout this document. This table can be completed based on the specific site variables and used in implementing the document configuration steps.

The Cisco UCS Fabric Interconnects are similarly configured. Additionally, this document details the steps for provisioning multiple Cisco UCS hosts, and these are identified sequentially: HANA-Server01, HANA-Server02, and so on. Finally, to indicate that you should include information pertinent to your environment in a given step, `<text>` appears as part of the command structure. Review the following example for the `network port vlan create` command:

Usage:

```
network port vlan create ?
  [-node] <nodename>                  Node
  { [-vlan-name] (<netport>|<ifgrp>) VLAN Name
    | -port (<netport>|<ifgrp>) Associated Network Port
  [-vlan-id] <integer> }             Network Switch VLAN Identifier
```

Example:

```
network port vlan -node <node01> -vlan-name i0a-<vlan id>
```

This document is intended to enable you to fully configure the customer environment. In this process, various steps require you to insert customer-specific naming conventions, IP addresses, and VLAN schemes, etc. Table 6 lists the configuration variables that are used throughout this document. This table can be completed based on the specific site variables and used in implementing the document configuration steps.

Table 6 Configuration Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Customer Implementation Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><<var_nexus_mgm_A_hostname>></code></td>
<td>Cisco Nexus Management A host name</td>
<td></td>
</tr>
</tbody>
</table>

Table: Solution Architecture

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Product</th>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco</td>
<td>Cisco UCS 6332 16UP FI</td>
<td>5.0(3)N2(3.23d)</td>
<td>Cisco UCS Fabric Interconnects</td>
</tr>
<tr>
<td>Cisco</td>
<td>Cisco UCS B-Series M4 Servers</td>
<td>3.2(3g)</td>
<td>Cisco B-Series M4 Blade Servers</td>
</tr>
<tr>
<td>Cisco</td>
<td>Cisco UCS VIC 1385</td>
<td>4.2(3b)</td>
<td>Cisco UCS VIC Adapter</td>
</tr>
<tr>
<td>Cisco</td>
<td>Cisco Nexus 9336C-FX2 Switches</td>
<td>7.3(0)7(3)</td>
<td>Cisco Nexus 9336C-FX2 Switches</td>
</tr>
<tr>
<td>SUSE</td>
<td>SUSE Linux Enterprise Server</td>
<td>SLES for SAP 12 SP3</td>
<td>Operating System to host SAP HANA</td>
</tr>
<tr>
<td>RHEL</td>
<td>RHEL for SAP HANA</td>
<td>RHEL 7.4</td>
<td>OS for HANA Nodes</td>
</tr>
<tr>
<td>Variable</td>
<td>Description</td>
<td>Customer Implementation Value</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>-----------------------------</td>
<td></td>
</tr>
<tr>
<td><<var_nexus_mgmt_A_mgmt0_ip>></td>
<td>Out-of-band Cisco Nexus Management A management IP address</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<var_nexus_mgmt_A_mgmt0_netmask>></td>
<td>Out-of-band management network netmask</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<var_nexus_mgmt_A_mgmt0_gw>></td>
<td>Out-of-band management network default gateway</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<var_nexus_mgmt_B_hostname>></td>
<td>Cisco Nexus Management B host name</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<var_nexus_mgmt_B_mgmt0_ip>></td>
<td>Out-of-band Cisco Nexus Management B management IP address</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<var_nexus_mgmt_B_mgmt0_netmask>></td>
<td>Out-of-band management network netmask</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<var_nexus_mgmt_B_mgmt0_gw>></td>
<td>Out-of-band management network default gateway</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<var_global_ntp_server_ip>></td>
<td>NTP server IP address</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<var_oob_vlan_id>></td>
<td>Out-of-band management network VLAN ID</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<var_admin_vlan_id_mgmt>></td>
<td>Mgmt PoD – Admin Network VLAN</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<var_admin_vlan_id>></td>
<td>Admin network VLAN ID – UCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<var_Win-AD-NFS>></td>
<td>Network services like DC, DNS etc., which is same as WFS network of Pure Storage FlashArray//X</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<var_nexus_mgmt_vpc_domain_id>></td>
<td>Unique Cisco Nexus switch VPC domain ID for Management PoD Nexus Switch pair</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<var_nexus_vpc_domain_id>></td>
<td>Unique Cisco Nexus switch VPC domain ID for Nx9336C-FX2 Switch pair</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<var_vm_host_mgmt_01_ip>></td>
<td>ESXi Server 01 for Management Server IP Address</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<var_vm_host_mgmt_02_ip>></td>
<td>ESXi Server 02 for Management Server IP Address</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<var_nexus_A_hostname>></td>
<td>Cisco Nexus Mgmt-A host name</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<var_nexus_A_mgmt0_ip>></td>
<td>Out-of-band Cisco Nexus Mgmt-A management IP address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variable</td>
<td>Description</td>
<td>Customer Implementation Value</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>------------------------------</td>
<td></td>
</tr>
<tr>
<td><<var_nexus_A_mgmt0_netmask>></td>
<td>Out-of-band management network netmask</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<var_nexus_A_mgmt0_gw>></td>
<td>Out-of-band management network default gateway</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<var_nexus_B_hostname>></td>
<td>Cisco Nexus Mgmt-B host name</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<var_nexus_B_mgmt0_ip>></td>
<td>Out-of-band Cisco Nexus Mgmt-B management IP address</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<var_nexus_B_mgmt0_netmask>></td>
<td>Out-of-band management network netmask</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<var_nexus_B_mgmt0_gw>></td>
<td>Out-of-band management network default gateway</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<var_nfs_shared_vlan_id>></td>
<td>/hana/shared NFS network</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<var_internal_vlan_id>></td>
<td>Node to Node Network for HANA Data/log VLAN ID</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<var_backup_vlan_id>></td>
<td>Backup Network for HANA Data/log VLAN ID</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<var_client_vlan_id>></td>
<td>Client Network for HANA Data/log VLAN ID</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<var_appserver_vlan_id>></td>
<td>Application Server Network for HANA Data/log VLAN ID</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<var_datasource_vlan_id>></td>
<td>Data source Network for HANA Data/log VLAN ID</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<var_replication_vlan_id>></td>
<td>Replication Network for HANA Data/log VLAN ID</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<iscsi_vlan_id_A>></td>
<td>iSCSI-A VLAN ID initiator UCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<iscsi_vlan_id_B>></td>
<td>iSCSI-B VLAN ID initiator UCS</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<var UCS_clustername>></td>
<td>Cisco UCS Manager cluster host name</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<var_ucsa_mgmt_ip>></td>
<td>Cisco UCS fabric interconnect (FI) A out-of-band management IP address</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<var_ucsa_mgmt_mask>></td>
<td>Out-of-band management network netmask</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<var_ucsa_mgmt_gateway>></td>
<td>Out-of-band management network default gateway</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<var_ucs_cluster_ip>></td>
<td>Cisco UCS Manager cluster IP address</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<var UCSB_mgmt_ip>></td>
<td>Cisco UCS FI B out-of-band management IP address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variable</td>
<td>Description</td>
<td>Customer Implementation Value</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
<td>-------------------------------</td>
<td></td>
</tr>
<tr>
<td><<var_cimc_gateway>></td>
<td>Out-of-band management network default gateway</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<var_ib-mgmt_vlan_id>></td>
<td>In-band management network VLAN ID</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<var_purect0_mgmt_ip>></td>
<td>Out-of-band management IP for storage cluster node 01</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<var_purect0_mgmt_mask>></td>
<td>Out-of-band management network netmask</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<var_purect0_mgmt_gateway>></td>
<td>Out-of-band management network default gateway</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<var_purect1_mgmt_ip>></td>
<td>Out-of-band management IP for storage cluster node 02</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<var_purect1_mgmt_mask>></td>
<td>Out-of-band management network netmask</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<var_purect1_mgmt_gateway>></td>
<td>Out-of-band management network default gateway</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<var_purecluster_ip>></td>
<td>Storage cluster IP</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<var_purecluster_netmask>></td>
<td>Storage cluster IP netmask</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<var_purecluster_gateway>></td>
<td>Storage cluster IP gateway</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<var_dns_domain_name>></td>
<td>DNS domain name</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<var_nameserver_ip>></td>
<td>DNS server IP(s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<var_global_ntp_server_ip>></td>
<td>NTP server IP address</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<var_dc_ip>></td>
<td>DC IP address</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<var_mds-a_name>></td>
<td>MDS 9000 A hostname</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<var_mds-a_ip>></td>
<td>MDS 9000 A Management IP Address</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<var_mgmt_netmask>></td>
<td>Management network Netmask</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<var_mgmt_gw>></td>
<td>Management network default Gateway</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<var_mds-b_name>></td>
<td>MDS 9000 B hostname</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<var_mds-b_ip>></td>
<td>MDS 9000 B Management IP Address</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<var_fc-pc_a_id>></td>
<td>Fibre Channel - Port Channel ID for MDS A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variable</td>
<td>Description</td>
<td>Customer Implementation Value</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td>-------------------------------</td>
<td></td>
</tr>
<tr>
<td><<var_fc-pc_b_id>></td>
<td>Fibre Channel - Port Channel ID for MDS A</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<var_san_a_id>></td>
<td>VSAN ID for MDS A</td>
<td></td>
<td></td>
</tr>
<tr>
<td><<var_san_b_id>></td>
<td>VSAN ID for MDS B</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Management Pod Installation

This section describes the configuration of the Management Pod to manage the multiple FlashStack environments for SAP HANA. In this reference architecture, the Management Pod includes a pair of Cisco Nexus 9000 Switches in standalone mode for out of band management network and a pair of Cisco UCS C220 M5 Rack-Mount Servers. The rack-mount servers for management are built on VMware ESXi. In the current validation setup, ESXi hosts run Windows Server jump host providing ADS, DNS and NTP services for Management. A Linux based VM running internet proxy services is providing for online updates of HANA nodes. The next sections outline the configurations of each component in the Management Pod.

Management Pod Cisco Nexus 9000 Series Switch Network Configuration

The following section provides a detailed procedure for configuring the Cisco Nexus 9000 Switches of the Mgmt PoD for SAP HANA environment. The switch configuration in this section based on cabling plan described in the Device Cabling section. If the systems are connected on different ports, configure the switches accordingly following the guidelines described in this section.

The configuration steps detailed in this section provide guidance for configuring the Cisco Nexus 9000 running release 7.3(0)DY(1) within a multi-VDC environment.

The following section provides a detailed procedure for configuring the Cisco Nexus 9000 Switches of the Mgmt PoD for SAP HANA environment. The switch configuration in this section based on cabling plan described in the device cabling section below. If the systems are connected on different ports in customer setup, configure the switches accordingly following the guidelines described in this section.

Device Cabling

Table 7 through Table 10 provide the details of the connections used for Management Pod.

In this reference design the Management Pod is directly connected to FlashStack as shown in Figure 18 by back-to-back vPCs.

Figure 18 Management POD Connectivity

![Management POD Connectivity Diagram]
Table 7 Cisco Nexus 9K-A Management Pod Cabling Information

<table>
<thead>
<tr>
<th>Local Device</th>
<th>Local Port</th>
<th>Connection</th>
<th>Remote Device</th>
<th>Remote Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>N9K-Mgmt– A</td>
<td>Eth1/49</td>
<td>40GbE</td>
<td>Nx9336C-FX2-A</td>
<td>Eth1/9</td>
</tr>
<tr>
<td>Eth1/50</td>
<td>40GbE</td>
<td></td>
<td>Nx9336C-FX2-B</td>
<td>Eth1/9</td>
</tr>
<tr>
<td>Eth1/47</td>
<td>10GbE</td>
<td></td>
<td>Mgmt PoD Nx2248 –10G</td>
<td>Port 3</td>
</tr>
<tr>
<td>Eth1/48</td>
<td>10GbE</td>
<td></td>
<td>Mgmt PoD Nx2248 –10G</td>
<td>Port 1</td>
</tr>
<tr>
<td>Eth1/53-54</td>
<td>10GbE</td>
<td></td>
<td>N9K Mgmt B – vPC Peer link</td>
<td>Eth1/53-54</td>
</tr>
</tbody>
</table>

Table 8 Cisco Nexus 9K-B Management Pod Cabling Information

<table>
<thead>
<tr>
<th>Local Device</th>
<th>Local Port</th>
<th>Connection</th>
<th>Remote Device</th>
<th>Remote Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>N9K-Mgmt– B</td>
<td>Eth1/49</td>
<td>40GbE</td>
<td>Nx9336C-FX2-A</td>
<td>Eth1/11</td>
</tr>
<tr>
<td>Eth1/50</td>
<td>40GbE</td>
<td></td>
<td>Nx9336C-FX2-B</td>
<td>Eth1/11</td>
</tr>
<tr>
<td>Eth1/47</td>
<td>10GbE</td>
<td></td>
<td>Mgmt PoD Nx2248 –10G</td>
<td>Port 4</td>
</tr>
<tr>
<td>Eth1/7</td>
<td>10GbE</td>
<td></td>
<td>Mgmt PoD Nx2248 –10G</td>
<td>Port 2</td>
</tr>
<tr>
<td>Eth1/53-54</td>
<td>40GbE</td>
<td></td>
<td>N9K Mgmt A – vPC Peer link</td>
<td>Eth1/53-54</td>
</tr>
</tbody>
</table>

Fiber Optic active cables are used for the uplink connectivity from Mgmt PoD Nexus switches to Nx9336C-FX2 switches.

Table 9 Cisco UCS C-Series Management Server

<table>
<thead>
<tr>
<th>Local Device</th>
<th>Local Port</th>
<th>Connection</th>
<th>Remote Device</th>
<th>Remote Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port 0</td>
<td>10GbE</td>
<td></td>
<td>N9K Management B</td>
<td>Eth 1/25</td>
</tr>
<tr>
<td>Port 1</td>
<td>10GbE</td>
<td></td>
<td>N9K Management A</td>
<td>Eth 1/25</td>
</tr>
</tbody>
</table>

Table 10 Cisco Nexus 2248 Management Pod Cabling Information

<table>
<thead>
<tr>
<th>Local Device</th>
<th>Local Port</th>
<th>Connection</th>
<th>Remote Device</th>
<th>Remote Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nxx248-Mgmt</td>
<td>Eth1/1</td>
<td>1 GbE</td>
<td>N9K-Mgmt-A</td>
<td>Mgmt0</td>
</tr>
<tr>
<td>Eth1/2</td>
<td>1 GbE</td>
<td></td>
<td>N9K-Mgmt-B</td>
<td>Mgmt0</td>
</tr>
<tr>
<td>Eth1/3</td>
<td>1 GbE</td>
<td></td>
<td>MDS-A</td>
<td>Mgmt0</td>
</tr>
</tbody>
</table>
The configuration steps detailed in this section provides guidance for configuring the Cisco Nexus 9000 running release 7.3(0)DY(1) within a multi-VDC environment.

These steps provide the details for the initial Cisco Nexus 9000 Series Switch setup.

Cisco Nexus 9000 Series Switches – Network Initial Configuration Setup

This section provides the steps for the initial Cisco Nexus 9000 Series Switch setup.

Cisco Nexus 9000 A

To set up the initial configuration for the first Cisco Nexus switch, complete the following steps:

--- Basic System Configuration Dialog VDC: 1 ---

This setup utility will guide you through the basic configuration of the system. Setup configures only enough connectivity for management of the system.

Note: setup is mainly used for configuring the system initially, when no configuration is present. So setup always assumes system defaults and not the current system configuration values.

Press Enter at anytime to skip a dialog. Use ctrl-c at anytime to skip the remaining dialogs.

Would you like to enter the basic configuration dialog (yes/no): yes

Do you want to enforce secure password standard (yes/no) [y]:

Create another login account (yes/no) [n]:

Configure read-only SNMP community string (yes/no) [n]:

<table>
<thead>
<tr>
<th>Local Device</th>
<th>Local Port</th>
<th>Connection</th>
<th>Remote Device</th>
<th>Remote Port</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eth1/4</td>
<td>1 GbE</td>
<td>MDS-B</td>
<td>Mgmt0</td>
</tr>
<tr>
<td></td>
<td>Eth1/5</td>
<td>1 GbE</td>
<td>FI-A</td>
<td>Mgmt0</td>
</tr>
<tr>
<td></td>
<td>Eth1/6</td>
<td>1 GbE</td>
<td>FI-B</td>
<td>Mgmt0</td>
</tr>
<tr>
<td></td>
<td>Eth1/7</td>
<td>1 GbE</td>
<td>Pure Storage FlashArray/XCT0</td>
<td>Mgmt0</td>
</tr>
<tr>
<td></td>
<td>Eth1/8</td>
<td>1 GbE</td>
<td>Pure Storage FlashArray/X CT1</td>
<td>Mgmt0</td>
</tr>
<tr>
<td></td>
<td>Eth/123</td>
<td>1 GbE</td>
<td>Nx9336C-FX2-A</td>
<td>Mgmt0</td>
</tr>
<tr>
<td></td>
<td>Eth1/24</td>
<td>1 GbE</td>
<td>Nx9336C-FX2-B</td>
<td>Mgmt0</td>
</tr>
</tbody>
</table>
Configure read-write SNMP community string (yes/no) [n]:

Enter the switch name: <<var_nexus_mgmt_A_hostname>>

Continue with Out-of-band (mgmt0) management configuration? (yes/no) [y]:

 Mgmt0 IPv4 address: <<var_nexus_mgmt_A_mgmt0_ip>>

 Mgmt0 IPv4 netmask: <<var_nexus_mgmt_A_mgmt0_netmask>>

Configure the default gateway? (yes/no) [y]:

 IPv4 address of the default gateway: <<var_nexus_mgmt_A_mgmt0_gw>>

Configure advanced IP options? (yes/no) [n]:

Enable the telnet service? (yes/no) [n]:

Enable the ssh service? (yes/no) [y]:

 Type of ssh key you would like to generate (dsa/rsa) [rsa]:

 Number of rsa key bits <1024-2048> [2048]:

Configure the ntp server? (yes/no) [n]: y

 NTP server IPv4 address: <<var_global_ntp_server_ip>>

Configure CoPP system profile (strict/moderate/lenient/dense/skip) [strict]:

The following configuration will be applied:

 password strength-check
 switchname <<var_nexus_mgmt_A_hostname>>
 vrf context management
 ip route 0.0.0.0/0 <<var_nexus_mgmt_A_mgmt0_gw>>
 exit
 no feature telnet
 ssh key rsa 2048 force
 feature ssh
 ntp server <<var_global_ntp_server_ip>>
 copp profile strict
 interface mgmt0
 ip address <<var_nexus_mgmt_A_mgmt0_ip>> <<var_nexus_mgmt_A_mgmt0_netmask>>
 no shutdown

Would you like to edit the configuration? (yes/no) [n]: Enter

Use this configuration and save it? (yes/no) [y]: Enter

[##] 100%

Copy complete.

Cisco Nexus 9000 B

To set up the initial configuration for the second Cisco Nexus switch, complete the following steps:
On initial boot and connection to the serial or console port of the switch, the NX-OS setup should automatically start and attempt to enter Power on Auto Provisioning.

---- Basic System Configuration Dialog VDC: 1 ----

This setup utility will guide you through the basic configuration of the system. Setup configures only enough connectivity for management of the system.

*Note: setup is mainly used for configuring the system initially, when no configuration is present. So setup always assumes system defaults and not the current system configuration values.

Press Enter at anytime to skip a dialog. Use ctrl-c at anytime to skip the remaining dialogs.

Would you like to enter the basic configuration dialog (yes/no): yes

Create another login account (yes/no) [n]:

Configure read-only SNMP community string (yes/no) [n]:

Configure read-write SNMP community string (yes/no) [n]:

Enter the switch name: <<var_nexus_mgmt_B_hostname>>

Continue with Out-of-band (mgmt0) management configuration? (yes/no) [y]:

 Mgmt0 IPv4 address: <<var_nexus_mgmt_B_mgmt0_ip>>

 Mgmt0 IPv4 netmask: <<var_nexus_mgmt_B_mgmt0_netmask>>

Configure the default gateway? (yes/no) [y]:

 IPv4 address of the default gateway: <<var_nexus_mgmt_B_mgmt0_gw>>

Configure advanced IP options? (yes/no) [n]:

Enable the telnet service? (yes/no) [n]:

Enable the ssh service? (yes/no) [y]:

 Type of ssh key you would like to generate (dsa/rsa) [rsa]:

 Number of rsa key bits <1024-2048> [2048]:

Configure the ntp server? (yes/no) [n]: y

 NTP server IPv4 address: <<var_global_ntp_server_ip>>

Configure default interface layer (L3/L2) [L3]: L2

Configure default switchport interface state (shut/noshut) [shut]: Enter
Configure CoPP system profile (strict/moderate/lenient/dense/skip) [strict]:

The following configuration will be applied:
 password strength-check
 switchname <<var_nexus_mgmt_B_hostname>>
 vrf context management
 ip route 0.0.0.0/0 <<var_nexus_mgmt_B_mgmt0_gw>>
 exit
 no feature telnet
 ssh key rsa 2048 force
 feature ssh
 ntp server <<var_global_ntp_server_ip>>
 copp profile strict
 interface mgmt0
 ip address <<var_nexus_mgmt_B_mgmt0_ip>> <<var_nexus_mgmt_B_mgmt0_netmask>>
 no shutdown

Would you like to edit the configuration? (yes/no) [n]: Enter

Use this configuration and save it? (yes/no) [y]: Enter

[##] 100%
Copy complete.

Enable Appropriate Cisco Nexus 9000 Series Switches—Features and Settings

Cisco Nexus 9000 A and Cisco Nexus 9000 B

To enable the IP switching feature and set the default spanning tree behaviors, complete the following steps:

1. On each Nexus 9000, enter configuration mode:

   ```
   config terminal
   ```

2. Use the following commands to enable the necessary features:

   ```
   feature udld
   Install feature-set fex
   feature-set fex
   feature lacp
   feature vpc
   feature interface-vlan
   feature lldp
   ```

3. Configure spanning tree defaults:

   ```
   spanning-tree port type network default
   spanning-tree port type edge bpduguard default
   spanning-tree port type edge bpdufilter default
   ```

4. Save the running configuration to start-up:

   ```
   copy run start
   ```
Create VLANs for SAP HANA Management Traffic

Cisco Nexus 9000 A and Cisco Nexus 9000 B

To create the necessary VLANs, complete the following steps on both switches:

1. From the configuration mode, run the following commands:

   ```
   vlan <<var_Win-AD-NFS>>
   name WIN-AD-NFS
   
   vlan <<var_mgmt_vlan_id>>
   name HANA-Mgmt
   ```

 The WIN-AD-NFS network referenced here should be the same VLAN that has been configured in the customer’s LAN that provides the active directory services, DNS, NTP management services. We match this VLAN ID with our NFS network we create as WFS configuration on Pure Storage FlashArray//XRUN platform needs access to Domain Controller / DNS and provides NFS share defined in the same network.

Configure Virtual Port-Channel Domain

Cisco Nexus 9000 A

To configure vPCs for switch A, complete the following steps:

1. From the global configuration mode, define the vPC domain:

   ```
   vpc domain <<var_nexus-mgmt_vpc_domain_id>>
   ```

2. Make Nexus 9000A the primary vPC peer by defining a low priority value:

   ```
   role priority 10
   ```

3. Use the management interfaces on the supervisors of the Nexus 9000s to establish a keepalive link:

   ```
   peer-keepalive destination <<var_nexus-mgmt_B_mgmt0_ip>> source <<var_nexus-mgmt_A_mgmt0_ip>>
   ```

4. Enable following features for this vPC domain:

   ```
   peer-switch
delay restore 150
peer-gateway
auto-recovery
   ```

Cisco Nexus 9000 B

To configure vPCs for switch B, complete the following steps:

1. From the global configuration mode, define the vPC domain:

   ```
   vpc domain <<var_nexus-mgmt_vpc_domain_id>>
   ```
2. Make Cisco Nexus 9000 B the secondary vPC peer by defining a higher priority value than that of the Nexus 9000 A:

```
role priority 20
```

3. Use the management interfaces on the supervisors of the Cisco Nexus 9000s to establish a keepalive link:

```
peer-keepalive destination <<var_nexus-mgmt_A_mgmt0_ip>> source <<var_nexus-mgmt_B_mgmt0_ip>>
```

4. Enable following features for this vPC domain:

```
peer-switch
delay restore 150
peer-gateway
auto-recovery
```

Configure Network Interfaces for the VPC Peer Links

Cisco Nexus 9000 A

1. Define a port description for the interfaces connecting to VPC Peer <<var_nexus_B_hostname>>.

```
interface Eth1/53
description VPC Peer <<var_nexus_B_hostname>>:1/53

interface Eth1/54
description VPC Peer <<var_nexus_B_hostname>>:1/54
```

2. Apply a port channel to both VPC Peer links and bring up the interfaces.

```
interface Eth1/53-54
cchannel-group 1 mode active
no shutdown
```

3. Define a description for the port-channel connecting to <<var_nexus_B_hostname>>.

```
interface Po1
description vPC peer-link
```

4. Make the port-channel a switchport, and configure a trunk to allow HANA management VLANs

```
switchport
switchport mode trunk
switchport trunk allowed vlan <<var_Win-AD-NFS>>,<<var_mgmt_vlan_id>>
```

5. Make this port-channel the VPC peer link and bring it up.

```
spanning-tree port type network
vpc peer-link
no shutdown
```
Cisco Nexus 9000 B

1. Define a port description for the interfaces connecting to VPC peer \(<\text{var_nexus_A_hostname}\>\).

   ```
   interface Eth1/53
   description VPC Peer \(<\text{var\_nexus\_A\_hostname}\>\):1/53
   
   interface Eth1/54
   description VPC Peer \(<\text{var\_nexus\_A\_hostname}\>\):1/54
   ```

2. Apply a port channel to both VPC peer links and bring up the interfaces.

   ```
   interface Eth1/53-54
   channel-group 1 mode active
   no shutdown
   ```

3. Define a description for the port-channel connecting to \(<\text{var_nexus_A_hostname}\>\).

   ```
   interface Po1
   description vPC peer-link
   ```

4. Make the port-channel a switchport, and configure a trunk to allow HANA VLANs.

   ```
   switchport
   switchport mode trunk
   switchport trunk allowed vlan \(<\text{var\_Win-AD-NFS}\>,\(<\text{var\_mgmt\_vlan\_id}\>\)
   ```

5. Make this port-channel the VPC peer link and bring it up.

   ```
   spanning-tree port type network
   vpc peer-link
   no shutdown
   ```

Direct Connection of Management Pod to FlashStack Infrastructure

This section describes the configuration steps for Cisco Nexus 9000 switches in the Management Pod connected to each FlashStack instance’s switches with back-to-back vPCs.

Cisco Nexus 9000 A

1. Define a port description for the interface connecting to \(<\text{var_nexus_A_hostname}\>\).

   ```
   interface eth1/49
   description \(<\text{var\_nexus\_A\_hostname}\>\):1/9
   ```

2. Define a port description for the interface connecting to \(<\text{var_nexus_B_hostname}\>\).

   ```
   interface eth1/50
   description \(<\text{var\_nexus\_B\_hostname}\>\):1/9
   ```

3. Assign both ports a port channel and bring up the interface.

   ```
   interface eth1/49-50
   channel-group 6 mode active
   ```
no shutdown

4. Define a description for the port-channel connecting to FlashStack Switch.

```plaintext
interface Po6
description back-to-back-vpc-with-Nx9336C-FX2-pair
```

5. Make the port-channel a switchport, and configure a trunk to allow all Management VLANs.

```plaintext
switchport
switchport mode trunk
switchport trunk allowed vlan
```

6. Make the port channel and associated interfaces spanning tree network ports.

```plaintext
spanning-tree port type network
```

7. Set the MTU to be 9216 to support jumbo frames.

```plaintext
mtu 9216
```

8. Make this a VPC port-channel and bring it up.

```plaintext
vpc 6
no shutdown
```

9. Save the running configuration to start-up.

```plaintext
copy run start
```

Cisco Nexus 9000 B

1. Define a port description for the interface connecting to `$var_nexus_A_hostname`.

```plaintext
interface eth1/49
description `$var_nexus_A_hostname`:eth1/11
```

2. Define a port description for the interface connecting to `$var_nexus_B_hostname`.

```plaintext
interface eth1/50
description `$var_nexus_B_hostname`:eth1/11
```

3. Assign both the interfaces to a port channel and bring up the interface.

```plaintext
interface eth1/49-50
channel-group 6 mode active
no shutdown
```

4. Define a description for the port-channel connecting to FlashStack Switch.

```plaintext
interface Po6
description back-to-back-vpc-with-Nx9336C-FX2-pair
```
5. Make the port-channel a switchport, and configure a trunk to allow all Management VLANs.

```
switchport
switchport mode trunk
switchport trunk allowed vlan switchport trunk allowed vlan <<var_Win-AD-NFS>>,<<var_mgmt_vlan_id>>
```

6. Make the port channel and associated interfaces spanning tree network ports.

```
spanning-tree port type network
```

7. Set the MTU to be 9216 to support jumbo frames.

```
mtu 9216
```

8. Make this a VPC port-channel and bring it up.

```
vpc 6
no shutdown
```

9. Save the running configuration to start-up.

```
copy run start
```

Dual-Homed FEX Topology (Active/Active FEX Topology) for 1 GE Management Access

A Nexus 2248 switch in dual-homed topology with management Nexus 9000 series switches is used for having the 1GE management access to all elements of the reference infrastructure.

The dual-homed FEX (Active/Active) topology is supported with NX-OS 7.0(3i5(2) and later using Cisco Nexus 9300 and Nexus 9300-EX Series switches. The following topology shows that each FEX is dual-homed with two Cisco Nexus 9300 Series switches.

The FEX-fabric interfaces for each FEX are configured as a vPC on both peer switches. The host interfaces on the FEX appear on both peer switches.

A sample high-level connectivity/configuration is shown below:
In our validation setup, we have all management ports connecting to N2K switch’s 1GE ports.

Configure Interfaces to Cisco Nexus 2248 Fabric Extender Switch

Cisco Nexus 9000 A and 9000 B

1. Define a port-channel for fex fabric connect

```bash
interface port-channel101
switchport mode trunk
vpc 101
switchport trunk allowed vlan <<var-mgmt-vlan-id>>
```

2. Define a port description for the interface connecting to `<<var_nexus_B_hostname>>`

```bash
interface eth1/47-48
channel-group mode 101 active
no shutdown
```

Configure Interfaces to Cisco UCS C220 Management Server

Cisco Nexus 9000 A

1. Define a port description for the interface connecting to `<<var_c220-mgmt-srv>>`-A and `<<var_c220-mgmt-srv>>`-B.

```bash
interface Eth1/25
description << var_C220-mgmt>>-A:P1

interface Eth1/26
description << var_C220-mgmt>>-B:P1
```

2. Make the switchport and configure a trunk to allow NFS, PXE, Management, VM traffic VLANs.
Management Pod Installation

Cisco Nexus 9000 B

1. Define a port description for the interface connecting to <<var_c220-mgmt-srv>>-A and <<var_c220-mgmt-srv>>-B.

 interface Eth1/25
 switchport
 switchport mode trunk
 switchport trunk allowed vlan switchport trunk allowed vlan <<var_Win-AD-NFS>>,<<var_mgmt_vlan_id>>
 spanning-tree port type edge trunk

 interface Eth1/26
 switchport
 switchport mode trunk
 switchport trunk allowed vlan switchport trunk allowed vlan <<var_Win-AD-NFS>>,<<var_mgmt_vlan_id>>
 spanning-tree port type edge trunk

2. Make the switchport and configure a trunk to allow NFS, PXE, Management, VM traffic VLANs.

 interface Eth1/25
 switchport
 switchport mode trunk
 switchport trunk allowed vlan switchport trunk allowed vlan <<var_Win-AD-NFS>>,<<var_mgmt_vlan_id>>
 spanning-tree port type edge trunk

 interface Eth1/26
 switchport
 switchport mode trunk
 switchport trunk allowed vlan switchport trunk allowed vlan <<var_Win-AD-NFS>>,<<var_mgmt_vlan_id>>
 spanning-tree port type edge trunk

Management Server Installation

The Cisco UCS C220 M5 Server acts as a management server for this solution. It requires VMware ESXi 6.5 for the Cisco UCS C220 M5 Servers and for the proxy services, either a SLES or Redhat Server in a VM. Windows based system VM can also be considered to host the Network services such as Domain Controller, DNS and NTP for use by the HANA nodes.

Server Configuration

The Cisco UCS C220 M5 Rack-Mount Servers are recommended for use as management servers in the FlashStack environment.
Cisco Integrated Management Controller (CIMC) of Cisco UCS C220 M5 Servers and both the Cisco UCS VIC card ports must be connected to Cisco Nexus 9000 Series Switches in the management network, as defined in the Cabling Section. Three IP addresses are necessary for each of the server; one each for the CIMC, ESXi console and PXE boot VM networks.

CIMC Configuration

To configure the IP-Address on the CIMC, complete the following steps:

1. With a direct attached monitor and keyboard press F8 when the following screen appears:

![Image of CIMC Configuration](image)

- **CISCO**

 Copyright (C) 2017 Cisco Systems, Inc.

 Press <F2> BIOS Setup : <F6> Boot Menu : <F7> Diagnostics
 Press <F6> CIMC Setup : <F12> Network Boot
 BIOS Version : C220M5.3.1.36.0.0613516103
 Platform ID : C220M5
 - Loading Ptu Driver
 Processor(s) Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz
 Total Memory = 384 GB Effective Memory = 384 GB
 Memory Operating Speed 2666 MHz
 M.2 SWRAID configuration is not detected. Switching to AHCI mode.

 Cisco IMC IPv4 Address :
 Cisco IMC MAC Address : 2C:33:11:44:20:EE

 Performing Platform Characterization ...

2. Configure the CIMC as required to be accessible from the Management LAN.
3. When connecting the CIMC to Management Switch, complete the following steps:
 a. Choose Dedicated under NIC mode
 b. Enter the IP address for CIMC which is accessible from the Management Network
 c. Enter the Subnet mask for CIMC network
 d. Enter the Default Gateway for CIMC network
 e. Choose NIC redundancy as None
 f. Enter the Default password for admin user under Default User (Basic) and Reenter password

Storage Configuration

To create a redundant virtual drive (RAID 1) on the internal disks to host ESXi and VMs, complete the following steps:

RAID1 for two internal disks in the Management server can be set up from the CIMC web Browser by completing the following steps:

1. Open a web browser and navigate to the Cisco C220-M5 CIMC IP address.
2. Enter admin as the user name and enter the administrative password, which was previously set.

3. Click Login to log in to CIMC.

4. On the Navigation Pane click the Storage tab. Select Cisco 12G Modular Raid Controller.
5. Click Create Virtual Drive from Unused Physical Drives.

6. Choose RAID Level 1 and Select the Disks and click >> to add them in the Drive Groups.
7. Click Create Virtual Drive to create the virtual drive.

8. Click the Virtual Drive Info tab.

9. Select the Virtual Drive created and Click Initialize.

10. Click Initialize VD.
11. As a prerequisite for ESXi installation, under Compute BIOS setting’s Security sub-tab, make sure Intel Trusted Execution Technology Support is Enabled.

VMware ESXi Installation

Install VMware ESXi 6.5d on the Cisco UCS M5 C-Series server and configure both Cisco UCS VIC interfaces as the ESX Management Network by completing the following steps.

Download Cisco Custom Image for ESXi 6.5a

1. Click the following link [vmware login page](#).
2. Type your email or customer number and the password and then click Log in.
3. Click the following link [Cisco ESXi 6.5U2 GA Install CD Download](#).
4. Click Download.
5. Save it to your destination folder.
VMware ESXi Hosts ESXi-Mgmt-01 and ESXi-Mgmt-02
To prepare the server for the OS installation, complete the following steps on each ESXi host:

1. On your Browser go to IP address Set for CIMC.
2. In the Navigation Pane Server > Summary.
3. Click Launch KVM Console.
4. Open with Java JRE installed.
5. Click the Virtual Media tab.
6. Click Map CD/DVD.
7. Browse to the ESXi installer ISO image file and click Open.
8. Select the Mapped checkbox to map the newly added image.

Install ESXi
Management Server ESXi-Mgmt-01 and ESXi-Mgmt-02
To install VMware ESXi on the local disk, complete the following steps on each host:

1. On reboot, the machine detects the presence of the ESXi installation media. Select the ESXi installer from the menu that is displayed.
2. After the installer is finished loading, press Enter to continue with the installation.
3. Read and accept the end-user license agreement (EULA). Press F11 to accept and continue.

4. Select the local disk which was previously created for ESXi and press Enter to continue with the installation.

5. Select the appropriate keyboard layout and press Enter.

6. Enter and confirm the root password and press Enter.

7. The installer issues a warning that existing partitions will be repartitioned. Press F11 to continue with the installation.

8. After the installation is complete, clear the Mapped checkbox (located in the Virtual Media tab of the KVM console) to unmapping the ESXi installation image.

9. The ESXi installation image must be unmapped to make sure that the server reboots into ESXi and not into the installer.

10. The Virtual Media window might issue a warning stating that it is preferable to eject the media from the guest. Click Yes to unmapping the image.

11. From the KVM tab, press Enter to reboot the server.

Set Up Management Networking for ESXi Hosts

Adding a management network for each VMware host is necessary for managing the host. To add a management network for the VMware hosts, complete the following steps on each ESXi host.

Configure Management Access

To configure the ESXi-Mgmt-01 ESXi host with access to the management network, complete the following steps:

1. After the server has finished rebooting, press F2 to customize the system.

2. Log in as root and enter the corresponding password.

3. Select the Configure the Management Network option and press Enter.

4. Select the VLAN (Optional) option and press Enter.

5. Enter the <<var_oob_vlan_id>> and press Enter.

6. From the Configure Management Network menu, select IP Configuration and press Enter.

7. Select the Set Static IP Address and Network Configuration option by using the space bar.

8. Enter the IP address for managing the first ESXi host: <<var_vm_host_mgmt_01_ip>>.

9. Enter the subnet mask for the first ESXi host.

10. Enter the default gateway for the first ESXi host.

11. Press Enter to accept the changes to the IP configuration.
12. Select the IPv6 Configuration option and press Enter.
13. Using the spacebar, unselect Enable IPv6 (restart required) and press Enter.
14. Select the DNS Configuration option and press Enter.
15. Because the IP address is assigned manually, the DNS information must also be entered manually.
16. Enter the IP address of the primary DNS server.
17. Optional: Enter the IP address of the secondary DNS server.
18. Enter the fully qualified domain name (FQDN) for the first ESXi host.
19. Press Enter to accept the changes to the DNS configuration.
20. Press Esc to exit the Configure Management Network submenu.
21. Press Y to confirm the changes and return to the main menu.
22. The ESXi host reboots. After reboot, press F2 and log back in as root.
23. Select Test Management Network to verify that the management network is set up correctly and press Enter.
24. Press Enter to run the test.
25. Press Enter to exit the window.
26. Press Esc to log out of the VMware console.

Repeat the above steps to configure the ESXi-Mgmt-02 ESXi host.

VMware ESXi Host ESXi-Mgmt-01

Set Up VMkernel Ports and Virtual Switch

Repeat the steps in this section for all the ESXi Hosts.

To set up the VMkernel ports and the virtual switches on the ESXi-Mgmt-01 ESXi host, complete the following steps:
1. From each Web client, select the host in the inventory.
2. Click the Networking in the main pane.
3. Select Standard Switch: vSwitch0
4. Select Network Adapters tab and add vmnic2 and vmnic3 to the vSwitch and click Save.
Configure Additional Port Groups on this New vSwitch.

1. Select Networking in the main pane.
2. Click properties of vSwitch0 and Select Ports tab.
3. Select VM port group.
4. For Network Label enter Mgmt. Enter VLAN ID for HANA-Mgmt.
5. Click Finish.

6. Add additional port groups for the Management network as well to the vSwitch.

7. Repeat the last section for the Win-AD-NFS network which is the DC, DNS services network used by the Pure Storage FlashArray//X’s WFS services.

We define this network/ VLAN for WIN-AD-NFS here as done in the validation setup example; we run the management services out of Windows Server VM running hosted in the ESXi environment.
8. Click Finish.

Configure NTP on ESXi Hosts

To configure Network Time Protocol (NTP) on the ESXi hosts, complete the following steps on each host:

1. From each vSphere Client, select the host in the inventory.

2. Click the Configuration tab to enable configurations.

3. Click Time Configuration in the Software pane.

4. Click Properties at the upper right side of the window.

5. At the bottom of the Time Configuration dialog box, click Options.

6. In the NTP Daemon Options dialog box, complete the following steps:

 a. Click General in the left pane, select Start and stop with host.

 b. Click NTP Settings in the left pane and click Add.

7. In the Add NTP Server dialog box, enter <<var_global_ntp_server_ip>> as the IP address of the NTP server and click OK.

8. In the NTP Daemon Options dialog box, select the Restart NTP Service to Apply Changes checkbox and click OK.
9. In the Time Configuration dialog box, complete the following steps:
 a. Select the NTP Client Enabled checkbox and click OK.
 b. Verify that the clock is now set to approximately the correct time.
10. The NTP server time may vary slightly from the host time.
The following section provides a detailed procedure for configuring the Cisco Nexus 9000 Switches of the Production PoD for SAP HANA environment. The switch configuration in this section based on cabling plan described in the Device Cabling section. If the systems connected on different ports, configure the switches accordingly following the guidelines described in this section.

The configuration steps detailed in this section provides guidance for configuring the Cisco Nexus 9000 running release 7.3(0)DY(1) within a multi-VDC environment.

Device Cabling

The information in this section is provided as a reference for the IP connectivity part of the production PoD with Nexus 9336C-FX2 switches interconnecting the Cisco UCS B480 M5 nodes in chassis through FIs and storage for NFS file share access [/hana/shared]. Figure 19 shows the cabling topology for IP network configuration of FlashStack for SAP HANA.
The tables below include both local and remote device and port locations for easy reference. The tables also capture the out-of-band management ports connectivity into preexisting management infrastructure, Table 11 through Table 14 provide the details of all the connections.

Table 11 Cisco UCS Fabric Interconnect A - Cabling Information

<table>
<thead>
<tr>
<th>Local Device</th>
<th>Local Port</th>
<th>Connection</th>
<th>Remote Device</th>
<th>Remote Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco UCS fabric interconnect A</td>
<td>Eth1/1</td>
<td>FC uplink</td>
<td>MDS-A</td>
<td>1/1</td>
</tr>
<tr>
<td></td>
<td>Eth1/2</td>
<td>FC uplink</td>
<td>MDS-A</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>Eth1/3</td>
<td>FC uplink</td>
<td>MDS-A</td>
<td>1/3</td>
</tr>
<tr>
<td></td>
<td>Eth1/4</td>
<td>FC uplink</td>
<td>MDS-A</td>
<td>1/4</td>
</tr>
<tr>
<td></td>
<td>Eth1/5-6</td>
<td>FC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 12 Cisco UCS Fabric Interconnect B - Cabling Information

<table>
<thead>
<tr>
<th>Local Device</th>
<th>Local Port</th>
<th>Connection</th>
<th>Remote Device</th>
<th>Remote Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco UCS fabric interconnect B</td>
<td>Eth1/1</td>
<td>FC uplink</td>
<td>MDS-B</td>
<td>1/1</td>
</tr>
<tr>
<td></td>
<td>Eth1/2</td>
<td>FC uplink</td>
<td>MDS-B</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>Eth1/3</td>
<td>FC uplink</td>
<td>MDS-B</td>
<td>1/3</td>
</tr>
<tr>
<td></td>
<td>Eth1/4</td>
<td>FC uplink</td>
<td>MDS-B</td>
<td>1/4</td>
</tr>
<tr>
<td></td>
<td>Eth1/5-6</td>
<td>FC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eth1/17</td>
<td>40GbE</td>
<td>Nx9336C-FX2-B</td>
<td>1/18</td>
</tr>
<tr>
<td></td>
<td>Eth1/18</td>
<td>40GbE</td>
<td>Nx9336C-FX2-A</td>
<td>1/18</td>
</tr>
<tr>
<td></td>
<td>Eth1/25</td>
<td>40GbE</td>
<td>Nx9336C-FX2-A</td>
<td>1/8</td>
</tr>
<tr>
<td></td>
<td>Eth1/26</td>
<td>40GbE</td>
<td>Nx9336C-FX2-B</td>
<td>1/8</td>
</tr>
<tr>
<td></td>
<td>Eth1/30-31</td>
<td>40GbE</td>
<td>Cisco UCS 5108 – IOM B</td>
<td>1/1, 1/5</td>
</tr>
<tr>
<td></td>
<td>MGMT0</td>
<td>GbE</td>
<td>N2k Mgmt</td>
<td>1/6</td>
</tr>
<tr>
<td></td>
<td>L1</td>
<td>GbE</td>
<td>Cisco UCS fabric interconnect B</td>
<td>L1</td>
</tr>
<tr>
<td></td>
<td>L2</td>
<td>GbE</td>
<td>Cisco UCS fabric interconnect B</td>
<td>L2</td>
</tr>
</tbody>
</table>
Table 13 Cisco Nexus 9336C-FX2-A Cabling Information

<table>
<thead>
<tr>
<th>Local Device</th>
<th>Local Port</th>
<th>Connection</th>
<th>Remote Device</th>
<th>Remote Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nx 9336C-FX2-A</td>
<td>Eth1/1</td>
<td>40GbE</td>
<td>Cisco UCS fabric interconnect A</td>
<td>Eth1/17</td>
</tr>
<tr>
<td></td>
<td>Eth1/3</td>
<td>40GbE</td>
<td>Cisco UCS fabric interconnect B</td>
<td>Eth1/18</td>
</tr>
<tr>
<td></td>
<td>Eth1/5</td>
<td>40GbE</td>
<td>Cisco UCS fabric interconnect A</td>
<td>Eth1/25</td>
</tr>
<tr>
<td></td>
<td>Eth1/7</td>
<td>40GbE</td>
<td>Cisco UCS fabric interconnect B</td>
<td>Eth1/26</td>
</tr>
<tr>
<td></td>
<td>Eth1/9</td>
<td>40GbE</td>
<td>N9K-Mgmt-A</td>
<td>Eth1/49</td>
</tr>
<tr>
<td></td>
<td>Eth1/11</td>
<td>40GbE</td>
<td>N9K-Mgmt-B</td>
<td>Eth1/49</td>
</tr>
<tr>
<td></td>
<td>Eth1/15</td>
<td>40GbE</td>
<td>Pure Storage FlashArray//XCT0 - iSCSI Port</td>
<td>Eth4</td>
</tr>
<tr>
<td></td>
<td>Eth1/16</td>
<td>40GbE</td>
<td>Pure Storage FlashArray//XCT0 - iSCSI Port</td>
<td>Eth4</td>
</tr>
<tr>
<td></td>
<td>Eth1/35</td>
<td>40GbE</td>
<td>Cisco Nexus 9336C-FX2 B (peer-link)</td>
<td>Eth1/35</td>
</tr>
<tr>
<td></td>
<td>Eth1/36</td>
<td>40GbE</td>
<td>Cisco Nexus 9336C-FX2 B (peer-link)</td>
<td>Eth1/36</td>
</tr>
<tr>
<td></td>
<td>MGMT0</td>
<td>GbE</td>
<td>Mgmt PoD Nx2248</td>
<td>Eth1/23</td>
</tr>
</tbody>
</table>

Table 14 Cisco Nexus 9336C-FX2-B Cabling Information

<table>
<thead>
<tr>
<th>Local Device</th>
<th>Local Port</th>
<th>Connection</th>
<th>Remote Device</th>
<th>Remote Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nx 9336C-FX2-B</td>
<td>Eth1/1</td>
<td>40GbE</td>
<td>Cisco UCS fabric interconnect A</td>
<td>Eth1/18</td>
</tr>
<tr>
<td></td>
<td>Eth1/3</td>
<td>40GbE</td>
<td>Cisco UCS fabric interconnect B</td>
<td>Eth1/17</td>
</tr>
<tr>
<td></td>
<td>Eth1/5</td>
<td>40GbE</td>
<td>Cisco UCS fabric interconnect A</td>
<td>Eth1/26</td>
</tr>
<tr>
<td></td>
<td>Eth1/7</td>
<td>40GbE</td>
<td>Cisco UCS fabric interconnect B</td>
<td>Eth1/26</td>
</tr>
<tr>
<td></td>
<td>Eth1/9</td>
<td>40GbE</td>
<td>N9K-Mgmt-A</td>
<td>Eth1/50</td>
</tr>
<tr>
<td></td>
<td>Eth1/11</td>
<td>40GbE</td>
<td>N9K-Mgmt-B</td>
<td>Eth1/50</td>
</tr>
<tr>
<td></td>
<td>Eth1/15</td>
<td>40GbE</td>
<td>Pure Storage FlashArray//X CT0 - iSCSI Port</td>
<td>Eth5</td>
</tr>
<tr>
<td></td>
<td>Eth1/16</td>
<td>40GbE</td>
<td>Pure Storage FlashArray//X CT0 - iSCSI Port</td>
<td>Eth5</td>
</tr>
<tr>
<td></td>
<td>Eth1/35</td>
<td>40GbE</td>
<td>Cisco Nexus 9336C-FX2 A (peer-link)</td>
<td>Eth1/35</td>
</tr>
<tr>
<td></td>
<td>Eth1/36</td>
<td>40GbE</td>
<td>Cisco Nexus 9336C-FX2 A (peer-link)</td>
<td>Eth1/36</td>
</tr>
<tr>
<td></td>
<td>MGMT0</td>
<td>GbE</td>
<td>Mgmt PoD Nx2248</td>
<td>Eth1/24</td>
</tr>
</tbody>
</table>

Twinax cables are used for iSCSI port Ethernet connectivity from Pure Storage FlashArray//X to Nx9336C-FX2 for NFS /hana/shared filesystem access.
Cisco Nexus 9000 A Initial Configuration

To set up the initial configuration for the first Cisco Nexus switch complete the following steps:

--- Basic System Configuration Dialog VDC: 1 ---

This setup utility will guide you through the basic configuration of the system. Setup configures only enough connectivity for management of the system.

*Note: setup is mainly used for configuring the system initially, when no configuration is present. So setup always assumes system defaults and not the current system configuration values.

Press Enter at anytime to skip a dialog. Use ctrl-c at anytime to skip the remaining dialogs.

Would you like to enter the basic configuration dialog (yes/no): yes

Do you want to enforce secure password standard (yes/no) [y]:

Create another login account (yes/no) [n]:

Configure read-only SNMP community string (yes/no) [n]:

Configure read-write SNMP community string (yes/no) [n]:

Enter the switch name: <<var_nexus_A_hostname>>

Continue with Out-of-band (mgmt0) management configuration? (yes/no) [y]:

 Mgmt0 IPv4 address: <<var_nexus_A_mgmt0_ip>>

 Mgmt0 IPv4 netmask: <<var_nexus_A_mgmt0_netmask>>

Configure the default gateway? (yes/no) [y]:

 IPv4 address of the default gateway: <<var_nexus_A_mgmt0_gw>>

Configure advanced IP options? (yes/no) [n]:

Enable the telnet service? (yes/no) [n]:

Enable the ssh service? (yes/no) [n]:

 Type of ssh key you would like to generate (dsa/rsa) [rsa]:

 Number of rsa key bits <1024~2048> [2048]: 1024

Configure the ntp server? (yes/no) [n]: y

 NTP server IPv4 address: <<var_global_ntp_server_ip>>
Configure default interface layer (L3/L2) [L2]:

Configure default switchport interface state (shut/noshut) [noshut]:

Configure CoPP system profile (strict/moderate/lenient/dense) [strict]:

The following configuration will be applied:

 password strength-check
 switchname <<var_nexus_A_hostname>>

vrf context management
 ip route 0.0.0.0/0 <<var_nexus_A_mgmt0_gw>>
exit
 no feature telnet
 no feature telnet
 ssh key rsa 1024 force
 feature ssh
 system default switchport
 no system default switchport shutdown
 copp profile stric interface mgmt0
 ip address <<var_nexus_A_mgmt0_ip>> <<var_nexus_A_mgmt0_netmask>>
 no shutdown

Would you like to edit the configuration? (yes/no) [n]: n

Use this configuration and save it? (yes/no) [y]: y

[##] 100%
Copy complete, now saving to disk (please wait)... Copy complete.

Cisco Nexus 9000 B Initial Configuration

To set up the initial configuration for the second Cisco Nexus switch, complete the following steps:

--- Basic System Configuration Dialog VDC: 1 ---

This setup utility will guide you through the basic configuration of the system. Setup configures only enough connectivity for management of the system.

*Note: setup is mainly used for configuring the system initially, when no configuration is present. So setup always assumes system defaults and not the current system configuration values.

Press Enter at anytime to skip a dialog. Use ctrl-c at anytime to skip the remaining dialogs.

Would you like to enter the basic configuration dialog (yes/no): yes
Create another login account (yes/no) [n]:

Configure read-only SNMP community string (yes/no) [n]:

Configure read-write SNMP community string (yes/no) [n]:

Enter the switch name: <<var_nexus_B_hostname>>

Continue with Out-of-band (mgmt0) management configuration? (yes/no) [y]:

Mgmt0 IPv4 address: <<var_nexus_B_mgmt0_ip>>

Mgmt0 IPv4 netmask: <<var_nexus_B_mgmt0_netmask>>

Configure the default gateway? (yes/no) [y]:

IPv4 address of the default gateway: <<var_nexus_B_mgmt0_gw>>

Configure advanced IP options? (yes/no) [n]:

Enable the telnet service? (yes/no) [n]:

Enable the ssh service? (yes/no) [y]:

Type of ssh key you would like to generate (dsa/rsa) [rsa]:

Number of rsa key bits <1024-2048> [2048]: 1024

Configure the ntp server? (yes/no) [n]: y

NTP server IPv4 address: <<var_global_ntp_server_ip>>

Configure default interface layer (L3/L2) [L2]:

Configure default switchport interface state (shut/noshut) [noshut]:

Configure CoPP system profile (strict/moderate/lenient/dense) [strict]:

The following configuration will be applied:

password strength-check
switchname <<var_nexus_B_hostname>>
vrf context management
ip route 0.0.0.0/0 <<var_nexus_B_mgmt0_gw>>
exit
no feature telnet
ssh key rsa 1024 force
feature ssh
system default switchport
no system default switchport shutdown
copp profile strict interface mgmt0
ip address <<var_nexus_B_mgmt0_ip>> <<var_nexus_B_mgmt0_netmask>>
no shutdown

Would you like to edit the configuration? (yes/no) [n]:

Use this configuration and save it? (yes/no) [y]:
Enable Appropriate Cisco Nexus 9000 Series Switches—Features and Settings

Cisco Nexus 9000 A and Cisco Nexus 9000 B

To enable the IP switching feature and set the default spanning tree behaviors, complete the following steps:

1. On each Nexus 9000, enter configuration mode:

   ```
   config terminal
   ```

2. Use the following commands to enable the necessary features:

   ```
   feature udld
   feature lacp
   feature vpc
   feature interface-vlan
   feature lldp
   ```

3. Configure spanning tree defaults:

   ```
   spanning-tree port type network default
   spanning-tree port type edge bpduguard default
   spanning-tree port type edge bpdufilter default
   ```

4. Save the running configuration to start-up:

   ```
   copy run start
   ```

Create VLANs for SAP HANA Traffic

Cisco Nexus 9000 A and Cisco Nexus 9000 B

To create the necessary VLANs, complete the following step on both switches:

1. From the configuration mode, run the following commands:

   ```
   vlan <<var_mgmt_vlan_id>>
   name HANA-Node-Mgmt

   vlan <<var_nfs-shared_vlan_id>>
   name HANA-NFSShared

   vlan <<var_internal_vlan_id>>
   name HANA-Internode

   vlan <<var_backup_vlan_id>>
   name HANA-Node-Backup

   vlan <<var_client_vlan_id>>
   ```
name HANA-Client
vlan <<var_appserver_vlan_id>>
name HANA-AppServer
vlan <<var_datasource_vlan_id>>
name HANA-DataSource
vlan <<var_replication_vlan_id>>
name HANA-System-Replication

It would be simpler to define the same VLAN ID for HANA-NFSshared as the one used by management services network providing the Active Directory Services, and DNS in the landscape.

Configure Virtual Port-Channel Domain

Cisco Nexus 9000 A
To configure vPCs for switch A, complete the following steps:

1. From the global configuration mode, create a new vPC domain:

```
vpc domain <<var_nexus_vpc_domain_id>>
```

2. Make Nexus 9000A the primary vPC peer by defining a low priority value:

```
role priority 10
```

3. Use the management interfaces on the supervisors of the Nexus 9000s to establish a keepalive link:

```
peer-keepalive destination <<var_nexus_B_mgmt0_ip>> source <<var_nexus_A_mgmt0_ip>>
```

4. Enable following features for this vPC domain:

```
peer-switch
delay restore 150
peer-gateway
auto-recovery
```

Cisco Nexus 9000 B
To configure vPCs for switch B, complete the following steps:

1. From the global configuration mode, define the same vPC domain in switch B:

```
vpc domain <<var_nexus_vpc_domain_id>>
```

2. Make Cisco Nexus 9000 B the secondary vPC peer by defining a higher priority value than that of the Nexus 9000 A:

```
role priority 20
```

3. Use the management interfaces on the supervisors of the Cisco Nexus 9000s to establish a keepalive link:
peer-keepalive destination <<var_nexus_A_mgmt0_ip>> source <<var_nexus_B_mgmt0_ip>>

4. Enable following features for this vPC domain:

peer-switch
delay restore 150
peer-gateway
auto-recovery

Configure Network Interfaces for the VPC Peer Links

Cisco Nexus 9000 A

1. Define a port description for the interfaces connecting to VPC Peer <<var_nexus_B_hostname>>.

interface Eth1/35
description VPC Peer <<var_nexus_B_hostname>>:1/35

interface Eth1/36
description VPC Peer <<var_nexus_B_hostname>>:1/36

2. Apply a port channel to both VPC Peer links and bring up the interfaces.

interface Eth1/35-36
channel-group 2 mode active
no shutdown

3. Define a description for the port-channel connecting to <<var_nexus_B_hostname>>.

interface Po2
description vPC peer-link

4. Make the port-channel a switchport, and configure a trunk to allow HANA VLANs

switchport
switchport mode trunk
switchport trunk allowed vlan <<var_nfs-shared_vlan_id>>,<<var_mgmt_vlan_id>>,<<var_internal_vlan_id>>,<<var_backup_vlan_id>> ,<<var_client_vlan_id>>,<<var_appserver_vlan_id>>,<<var_datasource_vlan_id>>,<<var_replication_vlan_id>>

5. Make this port-channel the VPC peer link and bring it up.

spanning-tree port type network
vpc peer-link
no shutdown

Cisco Nexus 9000 B

1. Define a port description for the interfaces connecting to VPC peer <<var_nexus_A_hostname>>.

interface Eth1/35
description VPC Peer <<var_nexus_A_hostname>>:1/35
interface Eth1/36
description VPC Peer <<var_nexus_A_hostname>>:1/36

2. Apply a port channel to both VPC peer links and bring up the interfaces.

interface Eth1/35-36
channel-group 2 mode active
no shutdown

3. Define a description for the port-channel connecting to <<var_nexus_A_hostname>>.

interface Po2
description vPC peer-link

4. Make the port-channel a switchport, and configure a trunk to allow HANA VLANs.

switchport
switchport mode trunk
switchport trunk allowed vlan <<var_nfs-shared_vlan_id>>,,<<var_mgmt_vlan_id>>,,<<var_internal_vlan_id>>,,<<var_backup_vlan_id>>,,<<var_client_vlan_id>>,,<<var_appserver_vlan_id>>,,<<var_datasource_vlan_id>>,,<<var_replication_vlan_id>>

5. Make this port-channel the VPC peer link and bring it up.

spanning-tree port type network
vpc peer-link
no shutdown

Configure vPCs with Cisco UCS Fabric Interconnect

To configure the vPCs for use by the Client zone, Admin zone, and internal zone traffic, complete the following steps:

Run on Cisco Nexus 9000 A and Cisco Nexus 9000 B

1. Define a port description for the interfaces connecting to <<var_ucs_clustername>>-A.

interface Eth1/17
description <<var_ucs_clustername>>-A:1/17

While running this on Switch B, Please note the change in remote port in the description command. In the current example, it would be “description <<var_ucs_clustername>>-A:1/18” based on the connectivity details. The same can be verified from command “show cdp neighbours”

2. Apply it to a port channel and bring up the interface.

interface eth1/17
channel-group 13 mode active
no shutdown

3. Define a description for the port-channel connecting to <<var_ucs_clustername>>-A.
interface Po13
description <<var_ucs_clustername>>-A

4. Make the port-channel a switchport, and configure a trunk to allow all HANA VLANs.

switchport
switchport mode trunk
switchport trunk allowed vlan <<var_mgmt_vlan_id>>,<<var_internal_vlan_id>>,<<var_client_vlan_id>>, <<var_appserver_vlan_id>>, <<var_datasource_vlan_id>>, <<var_replication_vlan_id>>

5. Make the port channel and associated interfaces spanning tree edge ports.

spanning-tree port type edge trunk

6. Set the MTU to be 9216 to support jumbo frames.

mtu 9216

7. Make this a VPC port-channel and bring it up.

vpc 13
no shutdown

8. Define a port description for the interface connecting to <<var_ucs_clustername>>-B.

interface Eth1/18
description <<var_ucs_clustername>>-B:1/17

While running this on Switch B, Please note the change in remote port in the description command. In the current example, it would be “description <<var_ucs_clustername>>-A:1/18” based on the connectivity details. The same can be verified from command “show cdp neighbours”

9. Apply it to a port channel and bring up the interface.

interface Eth1/18
channel-group 14 mode active
no shutdown

10. Define a description for the port-channel connecting to <<var_ucs_clustername>>-B.

interface Pl4
description <<var_ucs_clustername>>-B

11. Make the port-channel a switchport, and configure a trunk to allow all HANA VLANs.

switchport
switchport mode trunk
switchport trunk allowed
vlan,<<var_mgmt_vlan_id>>,<<var_internal_vlan_id>>,<<var_client_vlan_id>>,<<var_appserver_vlan_id>>, <<var_datasource_vlan_id>>, <<var_replication_vlan_id>>
12. Make the port channel and associated interfaces spanning tree edge ports.

```
spanning-tree port type edge trunk
```

13. Set the MTU to be 9216 to support jumbo frames.

```
mtu 9216
```

14. Make this a VPC port-channel and bring it up.

```
vpc 14
do shutdown
```

Configure SAP HANA Backup and NFS /hana/shared Networks to Use Separate vPCs

Configure additional vPCs to be used exclusively by the Storage zone networks namely, NFS hana/shared and HANA node backup networks. The following example configures two ports Ethernet 1/7 and Ethernet1/8 connected to Eth1/25 and Eth1/26 on the UCS Fabric Interconnects.

Run on Cisco Nexus 9000 A and Cisco Nexus 9000 B

1. Define a port description for the interface connecting to `<<var_node01>>`.

```
interface Eth1/7
description <<var_ucs_clustername>>-A:1/25
```

```
While running this on Switch B, Please note the change in remote port in the description command. In the current example, it would be “description <<var_ucs_clustername>>-A:1/26” based on the connectivity details. The same can be verified from command “show cdp neighbours”
```

2. Apply it to a port channel and bring up the interface.

```
interface eth1/7
channel-group 15 mode active
no shutdown
```

3. Define a description for the port-channel connecting to `<<var_backup_node01>>`.

```
interface Po15
description PC-from-FI-A
```

4. Make the port-channel a switchport, and configure a trunk to allow NFS VLAN for DATA.

```
switchport
switchport mode trunk
switchport trunk allowed vlan <<var_nfs-shared_vlan_id>>,<<var_backup_vlan_id>>
```

5. Make the port channel and associated interfaces spanning tree edge ports.

```
spanning-tree port type edge trunk
```

6. Set the MTU to be 9216 to support jumbo frames.
mtu 9216

7. Make this a VPC port-channel and bring it up.

vpc 15
no shutdown

8. Define a port description for the interface connecting to $<$var_node02$>$.

interface Eth1/8
description $<$var_ucs_clustername$>$-B:1/25

⚠️ While running this on Switch B, Please note the change in remote port in the description command. In the current example, it would be “description $<$var_ucs_clustername$>$-B:1/26” based on the connectivity details. The same can be verified from command “show cdp neighbours”

9. Apply it to a port channel and bring up the interface.

channel-group 16 mode active
no shutdown

10. Define a description for the port-channel connecting to $<$var_node02$>$.

interface Po16
description PC-from-FI-B

11. Make the port-channel a switchport, and configure a trunk to allow NFS VLAN for DATA

switchport
switchport mode trunk
switchport trunk allowed vlan $<$var_nfs-shared_vlan_id$>$, $<$var_backup_vlan_id$>$

12. Make the port channel and associated interfaces spanning tree edge ports.

spanning-tree port type edge trunk

13. Set the MTU to be 9216 to support jumbo frames.

mtu 9216

14. Make this a VPC port-channel and bring it up.

vpc 16
no shutdown

Configure Ports Connecting to Pure Storage FlashArray//XiSCSI Ports

Purity//FA’s RUN platform based WFS configuration that enables NFS filesystem provisioning uses iSCSI ports on the array controllers for southbound connectivity to consumer nodes via the Ethernet switches. The iSCSI ports work as uplink ports for the controller hosted Windows 2016 Server VMs configured as failover cluster. The iSCSI ports on the array side do not support LACP; they are configured as access ports with spanning-tree type edge.
In this section, you will configure the ports that connect to Pure Storage FlashArray//X’s iSCSI ports that provide IP connectivity to NFS share for HANA nodes.

Cisco Nexus 9000 A

1. Define a port description for the interface connecting to iSCSI port eth4 on array controller 0.

   ```
   interface Eth1/15
   description Pure-CT0-iscsi-eth4
   ```

2. Configure it as access port and assign the NFS network VLAN.

   ```
   switchport access <<var-nfs-shared-vlan-id>>
   spanning-tree port type edge
   no shutdown
   ```

3. Define a port description for the interface connecting to iSCSI port eth4 on array controller 1.

   ```
   interface eth1/16
   description Pure-CT1-iscsi-eth4
   ```

4. Configure it as access port and assign the NFS network VLAN.

   ```
   switchport access <<var-nfs-shared-vlan-id>>
   spanning-tree port type edge
   no shutdown
   ```

Cisco Nexus 9000 B

1. Define a port description for the interface connecting to iSCSI port eth5 on array controller 0.

   ```
   interface Eth1/15
   description Pure-CT0-iscsi-eth5
   ```

2. Configure it as access port and assign the NFS network VLAN.

   ```
   switchport access <<var-nfs-shared-vlan-id>>
   spanning-tree port type edge
   no shutdown
   ```

3. Define a port description for the interface connecting to iSCSI port eth5 on array controller 1.

   ```
   interface eth1/16
   description Pure-CT1-iscsi-eth5
   ```

4. Configure it as access port and assign the NFS network VLAN.

   ```
   switchport access <<var-nfs-shared-vlan-id>>
   spanning-tree port type edge
   no shutdown
   ```

Make sure to save the configuration to the startup config using the command “copy r s”
Configure Cisco MDS 9148S Switches

Figure 20 illustrates the connected MDS Switches to Fabric Interconnects and Pure Storage FlashArray//X.

For this solution, we connected four ports (ports 1-4) of MDS Switch A to Fabric Interconnect A (ports 1-4). Similarly, we connected four ports (ports 1-4) of MDS Switch B to Fabric Interconnect B (ports 1-4). We connected four ports (ports 33-36) of MDS Switch A to Pure Storage FlashArray//X. Similarly, we connected four ports (ports 33-36) of MDS Switch B to Pure Storage FlashArray//X as shown in Table 15. All ports carry 16 GB FC Traffic.

Table 15 MDS 9148S – A Port Connection to Cisco UCS FI-A and Pure Storage

<table>
<thead>
<tr>
<th>Local Device</th>
<th>Local Port</th>
<th>Connection</th>
<th>Remote Device</th>
<th>Remote Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco MDS - A</td>
<td>fc 1/1</td>
<td>16Gb</td>
<td>UCS FI- A</td>
<td>1/1</td>
</tr>
<tr>
<td></td>
<td>fc 1/2</td>
<td>16Gb</td>
<td>UCS FI- A</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>fc 1/3</td>
<td>16Gb</td>
<td>UCS FI- A</td>
<td>1/3</td>
</tr>
<tr>
<td></td>
<td>fc 1/4</td>
<td>16Gb</td>
<td>UCS FI- A</td>
<td>1/4</td>
</tr>
<tr>
<td></td>
<td>fc 1/33</td>
<td>16Gb</td>
<td>Pure Storage FlashArray//X - Storage Controller-0</td>
<td>CT0-FC2</td>
</tr>
<tr>
<td></td>
<td>fc 1/34</td>
<td>16Gb</td>
<td>Pure Storage FlashArray//X - Storage Controller-1</td>
<td>CT1-FC2</td>
</tr>
<tr>
<td></td>
<td>fc 1/35</td>
<td>16Gb</td>
<td>Pure Storage FlashArray//X - Storage Controller-0</td>
<td>CT0-FC0</td>
</tr>
<tr>
<td></td>
<td>fc 1/36</td>
<td>16Gb</td>
<td>Pure Storage FlashArray//X - Storage Controller-1</td>
<td>CT1-FC0</td>
</tr>
<tr>
<td></td>
<td>MGMT0</td>
<td>GbE</td>
<td>Customer’s Management Switch</td>
<td>Any</td>
</tr>
</tbody>
</table>
Table 16 MDS 9148S –B Port Connection to Cisco UCS FI-B and Pure Storage

<table>
<thead>
<tr>
<th>Local Device</th>
<th>Local Port</th>
<th>Connection</th>
<th>Remote Device</th>
<th>Remote Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco MDS - B</td>
<td>fc 1/1</td>
<td>16Gb</td>
<td>UCS FI- B</td>
<td>1/1</td>
</tr>
<tr>
<td></td>
<td>fc 1/2</td>
<td>16Gb</td>
<td>UCS FI- B</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>fc 1/3</td>
<td>16Gb</td>
<td>UCS FI- B</td>
<td>1/3</td>
</tr>
<tr>
<td></td>
<td>fc 1/4</td>
<td>16Gb</td>
<td>UCS FI- B</td>
<td>1/4</td>
</tr>
<tr>
<td></td>
<td>fc 1/33</td>
<td>16Gb</td>
<td>Pure Storage FlashArray//X - Storage Controller-0</td>
<td>CT0-FC3</td>
</tr>
<tr>
<td></td>
<td>fc 1/34</td>
<td>16Gb</td>
<td>Pure Storage FlashArray//X - Storage Controller-1</td>
<td>CT1-FC3</td>
</tr>
<tr>
<td></td>
<td>fc 1/35</td>
<td>16Gb</td>
<td>Pure Storage FlashArray//X - Storage Controller-0</td>
<td>CT0-FC1</td>
</tr>
<tr>
<td></td>
<td>fc 1/36</td>
<td>16Gb</td>
<td>Pure Storage FlashArray//X - Storage Controller-1</td>
<td>CT1-FC1</td>
</tr>
<tr>
<td>MGMT0</td>
<td>GbE</td>
<td></td>
<td>Customer’s Management Switch</td>
<td>Any</td>
</tr>
</tbody>
</table>

This section explains the fabric switch configuration required for the FlashStack for SAP HANA.

This example uses the Fibre Channel Port Channel between the Cisco MDS switches and the Cisco UCS Fabric Interconnects.

⚠️ Since Cisco UCS is not configured at this time, the FC ports connected to the Cisco UCS Fabric Interconnects will not come up.

Cisco MDS Initial Configuration

Cisco MDS 9148S A

Connect to the console port of MDS9148S-A.

 ---- System Admin Account Setup ----

Do you want to enforce secure password standard (yes/no) [y]: yes

 Enter the password for "admin": <<var_mgmt_passwd>>
 Confirm the password for "admin": <<var_mgmt_passwd>>

 ---- Basic System Configuration Dialog ----

This setup utility will guide you through the basic configuration of the system. Setup configures only enough connectivity for management of the system.

Please register Cisco MDS 9000 Family devices promptly with your
supplier. Failure to register may affect response times for initial service calls. MDS devices must be registered to receive entitled support services.

Press Enter at any time to skip a dialog. Use ctrl-c at anytime to skip the remaining dialogs.

Would you like to enter the basic configuration dialog (yes/no): yes

Create another login account (yes/no) [n]:

Configure read-only SNMP community string (yes/no) [n]: yes

SNMP community string:

Enter the switch name: <<var_mds-a_name>>

Continue with Out-of-band (mgmt0) management configuration? (yes/no) [y]:

Mgmt0 IPv4 address: <<var_mds-a_ip>>

Mgmt0 IPv4 netmask: <<var_mgmt_netmask>>

Configure the default gateway? (yes/no) [y]:

IPv4 address of the default gateway: <<var_mgmt_gw>>

Configure advanced IP options? (yes/no) [n]:

Enable the ssh service? (yes/no) [y]:

Type of ssh key you would like to generate (dsa/rsa) [rsa]:

Number of rsa key bits <768-2048> [1024]: 2048

Enable the telnet service? (yes/no) [n]:

Enable the http-server? (yes/no) [y]:

Configure clock? (yes/no) [n]:

Configure timezone? (yes/no) [n]: n

Configure the ntp server? (yes/no) [n]: y

NTP server IPv4 address: <<var_global_ntp_server_ip>>

Configure default switchport interface state (shut/noshut) [shut]: noshut

Configure default switchport trunk mode (on/off/auto) [on]: auto

Configure default switchport port mode F (yes/no) [n]: y

Configure default zone policy (permit/deny) [deny]:

Enable full zoneset distribution? (yes/no) [n]:

Configure default zone mode (basic/enhanced) [basic]:

The following configuration will be applied:
password strength-check
snmp-server community <<var_snmp_ro_string>> ro
switchname <<var_mds-a_name>>
interface mgmt0
 ip address <<var_mds-a_ip>> <<var_mgmt_netmask>>
 no shutdown
ip default-gateway <<var_mgmt_gw>>
ssh key rsa 2048 force
feature ssh
no feature telnet
feature http-server
ntp server <<var_global_ntp_server_ip>>
no system default switchport shutdown
system default switchport trunk mode auto
system default switchport mode F
no system default zone default-zone permit
no system default zone distribute full
no system default zone mode enhanced

Would you like to edit the configuration? (yes/no) [n]: no

Use this configuration and save it? (yes/no) [y]: yes

[##] 100%

Cisco MDS 9148S B

Connect to the console port of MDS9148S-B.

---- System Admin Account Setup ----

Do you want to enforce secure password standard (yes/no) [y]: yes

Enter the password for "admin": <<var_mgmt_passwd>>
Confirm the password for "admin": <<var_mgmt_passwd>>

---- Basic System Configuration Dialog ----

This setup utility will guide you through the basic configuration of the system. Setup configures only enough connectivity for management of the system.

Please register Cisco MDS 9000 Family devices promptly with your supplier. Failure to register may affect response times for initial service calls. MDS devices must be registered to receive entitled support services.

Press Enter at any time to skip a dialog. Use ctrl-c at anytime to skip the remaining dialogs.

Would you like to enter the basic configuration dialog (yes/no): yes

Create another login account (yes/no) [n]:

84
Configure read-only SNMP community string (yes/no) [n]: yes
SNMP community string:
Enter the switch name: <<var_mds-b_name>>
Continue with Out-of-band (mgmt0) management configuration? (yes/no) [y]:
Mgmt0 IPv4 address: <<var_mds-b_ip>>
Mgmt0 IPv4 netmask: <<var_mgmt_netmask>>
Configure the default gateway? (yes/no) [y]:
IPv4 address of the default gateway: <<var_mgmt_gw>>
Configure advanced IP options? (yes/no) [n]:
Enable the ssh service? (yes/no) [y]:
Type of ssh key you would like to generate (dsa/rsa) [rsa]:
Number of rsa key bits <768-2048> [1024]: 2048
Enable the telnet service? (yes/no) [n]:
Enable the http-server? (yes/no) [y]:
Configure clock? (yes/no) [n]:
Configure timezone? (yes/no) [n]: n
Configure the ntp server? (yes/no) [n]: y
NTP server IPv4 address: <<var_global_ntp_server_ip>>
Configure default switchport interface state (shut/noshut) [shut]: noshut
Configure default switchport trunk mode (on/off/auto) [on]: auto
Configure default switchport port mode F (yes/no) [n]: y
Configure default zone policy (permit/deny) [deny]:
Enable full zoneset distribution? (yes/no) [y]:
Configure default zone mode (basic/enhanced) [basic]:

The following configuration will be applied:
 password strength-check
 snmp-server community <<var_snmp_ro_string>> ro
 switchname <<var_mds-b_name>>
 interface mgmt0
 ip address <<var_mds-b_ip>> <<var_mgmt_netmask>>
 no shutdown
 ip default-gateway <<var_mgmt_gw>>
 ssh key rsa 2048 force
feature ssh
no feature telnet
feature http-server
ntp server <<var_global_ntp_server_ip>>
no system default switchport shutdown
system default switchport trunk mode auto
system default switchport mode F
no system default zone default-zone permit
no system default zone distribute full
no system default zone mode enhanced

Would you like to edit the configuration? (yes/no) [n]: no
Use this configuration and save it? (yes/no) [y]: yes
[##] 100%

Configure the Management Port and Enable Essential Features
On MDS 9148S A and B enter configuration mode and execute following commands:

 interface mgmt 0
 switchport speed 1000
 no shut

Configure Fibre Channel Ports and Port Channels

1. On MDS 9148S A enter the configuration mode and enable the required features as shown below:

 feature fport-channel-trunk
 feature npiv

2. Use the following commands to configure the FC Port channel and add all FC ports connected to Cisco UCS Fabric Interconnect A:

 int port-channel <<var_fc-pc_a_id>>
 channel mode active

 int fc1/1-4
 channel-group <<var_fc-pc_a_id>> force

 int port-channel <<var_fc-pc_a_id>>
 switchport mode F
 switchport trunk mode off
 no shut

3. On MDS 9148S B enter the configuration mode and enable the required features as shown below:

 feature fport-channel-trunk
 feature npiv

4. Use the following commands to configure the FC Port channel and add all FC ports connected to Cisco UCS Fabric Interconnect B:
int port channel <<var_fc-pc_b_id>>
channel mode active

int fc1/1-4
channel-group <<var_fc-pc_b_id>> force

int port channel <<var_fc-pc_b_id>>
switchport mode F
switchport trunk mode off
no shut

Configure VSANs

1. On MDS 9148S A enter the configuration mode and execute the following commands to configure the VSAN:

vsan database
vsan <<var_san_a_id>>
vsan <<var_san_a_id>> interface port channel <<var_fc-pc_a_id>>
vsan <<var_san_a_id>> interface fc 1/33
vsan <<var_san_a_id>> interface fc 1/34
vsan <<var_san_a_id>> interface fc 1/35
vsan <<var_san_a_id>> interface fc 1/36

int fc 1/33-36
switchport trunk mode off
switchport trunk allowed vsan <<var_san_a_id>>
port-license acquire
no shut

2. On MDS 9148S B enter the configuration mode and execute the following commands to configure the VSAN:

vsan database
vsan <<var_san_b_id>>
vsan <<var_san_b_id>> interface port channel <<var_fc-pc_b_id>>
vsan <<var_san_b_id>> interface fc 1/33
vsan <<var_san_b_id>> interface fc 1/34
vsan <<var_san_b_id>> interface fc 1/35
vsan <<var_san_b_id>> interface fc 1/36

int fc 1/33-36
switchport trunk mode off
switchport trunk allowed vsan <<var_san_b_id>>
port-license acquire
no shut

⚠️ Make sure to save the configuration to the startup config using the command “copy r s”
Cisco UCS Configuration Overview

It is beyond the scope of this document to cover detailed information about the Cisco UCS infrastructure setup and connectivity. The documentation guides and examples are available at: http://www.cisco.com/en/US/products/ps10281/products_installation_and_configuration_guides_list.html.

This document details only the tasks to configure Cisco UCS and presents minimal screenshots.

High-Level Steps to Configure Cisco Unified Computing System

The following are the high-level steps involved for a Cisco UCS configuration:

2. Configure Fabric Interconnects for Chassis and Blade Discovery:
 a. Configure Global Policies
 b. Configure Server Ports

3. Configure LAN and SAN on Cisco UCS Manager:
 a. Configure Ethernet LAN Uplink Ports
 b. Configure FC SAN Uplink Ports
 c. Configure VLAN
 d. Configure VSAN

4. Configure UUID, IP, MAC, WWNN and WWPN Pools:
 a. UUID Pool Creation
 b. IP and MAC Pool Creation
 c. WWNN and WWPN Pool Creation

5. Configure vNIC and vHBA Template:
 a. Create vNIC Template one each for Fabric A and B
 b. Create Storage vHBA Template one each for Fabric A and B

6. Configure Ethernet Uplink Port-Channels.

7. Create Server Boot Policy for SAN Boot.

Initial Setup of Cisco UCS 6332-16UP Fabric Interconnects

This section provides detailed procedures for configuring the Cisco Unified Computing System for use in SAP HANA Scale-Out Solution environment. The steps are necessary to provision the Cisco UCS C-Series servers to meet SAP HANA requirement.

Cisco UCS 6332-16UP Fabric Interconnect A

To configure the Cisco UCS Fabric Interconnect A, complete the following steps:

1. Connect to the console port on the first Cisco UCS 6300 Fabric Interconnect.
Enter the configuration method: console

Enter the setup mode; setup newly or restore from backup (setup/restore)? setup

You have chosen to setup a new fabric interconnect? Continue? (y/n): y

Enforce strong passwords? (y/n) [y]: y

Enter the password for "admin": <<var_password>>

Enter the same password for "admin": <<var_password>>

Is this fabric interconnect part of a cluster (select 'no' for standalone)? (yes/no) [n]: y

Which switch fabric (A|B): A

Enter the system name: <<var_ucs_clustername>>

Physical switch Mgmt0 IPv4 address: <<var_ucsa_mgmt_ip>>

Physical switch Mgmt0 IPv4 netmask: <<var_ucsa_mgmt_mask>>

IPv4 address of the default gateway: <<var_ucsa_mgmt_gateway>>

Cluster IPv4 address: <<var_ucs_cluster_ip>>

Configure DNS Server IPv4 address? (yes/no) [no]: y

DNS IPv4 address: <<var_nameserver_ip>>

Configure the default domain name? y

Default domain name: <<var_dns_domain_name>>

Join centralized management environment (UCS Central)? (yes/no) [n]: Enter

2. Review the settings printed to the console. If they are correct, answer yes to apply and save the configuration.

3. Wait for the login prompt to make sure that the configuration has been saved.

Cisco UCS 6332-16UP Fabric Interconnect B

To configure the Cisco UCS Fabric Interconnect B, complete the following steps:

1. Connect to the console port on the second Cisco UCS 632 Fabric Interconnect.

 Enter the configuration method: console
 Installer has detected the presence of a peer Fabric interconnect. This Fabric interconnect will be added to the cluster. Do you want to continue {y|n}? y
 Enter the admin password for the peer fabric interconnect: <<var_password>>

 Physical switch Mgmt0 IPv4 address: <<var_ucsb_mgmt_ip>>

 Apply and save the configuration (select 'no' if you want to re-enter)? (yes/no): y

2. Wait for the login prompt to make sure that the configuration has been saved.
Log in to Cisco UCS Manager

To log in to the Cisco Unified Computing System environment, complete the following steps:

1. Open a web browser and navigate to the Cisco UCS 6332 Fabric Interconnect cluster address.

2. Click Launch UCS Manager.

3. If prompted to accept security certificates, accept as necessary.

4. When prompted, enter admin as the user name and enter the administrative password.

5. Click Login to log in to the Cisco UCS Manager.
Chassis Discovery Policy

Setting the discovery policy aids the discovery of Cisco UCS B-Series chassis and of Cisco UCS C-Series server connectivity.

To modify the chassis discovery policy, complete the following steps:

1. In Cisco UCS Manager, click the Equipment tab in the navigation pane and select Equipment in the list on the left.

2. In the right pane, click the Policies tab.

3. Under Global Policies, set the Chassis/FEX Discovery Policy to match the number of uplink ports that are cabled between the chassis or fabric extenders (FEXes) and the fabric interconnects. Set the Link Grouping Preference to Port Channel.

4. Select Immediate for Rack Server Discovery Policy.

5. Click Save Changes.

6. Click OK.
Configure Server Ports

To enable server and uplink ports, complete the following steps:

1. In Cisco UCS Manager, click the Equipment tab in the navigation pane.
3. Expand Ethernet Ports.
4. Select the ports that are connected to the chassis and/or to the Cisco C-Series Server (two per FI), right-click them, and select Configure as Server Port.
5. Click Yes to confirm server ports and click OK.
6. Verify that the ports connected to the chassis and/or to the Cisco C-Series Server are now configured as server ports.

8. Expand Ethernet Ports.
9. Select the ports that are connected to the chassis or to the Cisco C-Series Server (two per FI), right-click them, and select Configure as Server Port.

10. Click Yes to confirm server ports and click OK.

Configure FC SAN Uplink Ports

To configure the FC SAN Uplink ports, complete the following steps:

1. Configure the ports connected to the MDS as FC SAN Uplink Ports. This step creates the first set of ports from the left for example, ports 1–6 of the Fixed Module for FC uplinks and the rest for Ethernet uplinks to N9Ks.

 While configuring the Fixed Module Ports, the slider bar movement enables sets of ports from the left of the module as FC ports. The remainder is available for Ethernet Uplinks. This step used 4 ports for uplink to MDS, it would be enough to configure first set of 6 ports as FC ports.

2. Select Equipment > Fabric Interconnects > Fabric Interconnect A and on the right pane, General > Under Actions > Configure Unified Ports. Choose Yes for the warning pop-up in Cisco UCS Manager, click the Equipment tab in the navigation pane. Move the slider bar to right to enable the first set of 6 ports for FC Uplink Role. Click OK.

![Figure 25 Cisco UCS – Configure Fixed Module Ports](image-url)
3. Select Equipment > Fabric Interconnects > Fabric Interconnect B and on the right pane, General > Under Actions > Configure Unified Ports. Choose Yes for the warning pop-up in Cisco UCS Manager, click the Equipment tab in the navigation pane. Move the slider bar to right to enable the first set of 6 ports for FC Uplink Role. Click OK.

Figure 26 Configure Unified Ports

Applying this configuration will cause the immediate reboot of Fabric Interconnect and/or Expansion Module(s), because changes to the fixed module require a reboot of the Fabric Interconnect and changes on an Expansion Module require a reboot of that module.

Are you sure you want to apply the changes?

Yes No

4. After the FIs are accessible after reboot, re-login to Cisco UCS Manager.

5. In Cisco UCS Manager, click the Equipment tab in the navigation pane.

7. Expand FC Ports.

8. Select ports that are connected to the Cisco MDS switch, right-click them, and select Enable.

9. Click Yes to confirm enabling and click OK.

Figure 27 Cisco UCS – FC Uplink Port Configuration Example

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Fabric Interconnects</th>
<th>Fabric Interconnect A (primary)</th>
<th>Fixed Module</th>
<th>FC Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC Ports</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced</td>
<td>Port</td>
<td>WWPN</td>
<td>FC</td>
<td>UNCL</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>------</td>
<td>----</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>10.01:00:00:00:00:00</td>
<td>Network</td>
<td>Physical</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>10.02:00:00:00:00:00</td>
<td>Network</td>
<td>Physical</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>10.03:00:00:00:00:00</td>
<td>Network</td>
<td>Physical</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>10.04:00:00:00:00:00</td>
<td>Network</td>
<td>Physical</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>10.05:00:00:00:00:00</td>
<td>Network</td>
<td>Physical</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>10.06:00:00:00:00:00</td>
<td>Network</td>
<td>Physical</td>
</tr>
</tbody>
</table>

11. Expand FC Ports.

12. Select ports that are connected to the Cisco MDS switch, right-click them, and select Enable.

13. Click Yes to confirm enabling and click OK.

Configure Ethernet Uplink Ports

To configure the ethernet uplink ports, complete the following steps:

1. Configure the ports connected to the N9Ks Ethernet Uplink Ports. Select the set of ports to the right of the 16 UP Fixed Module for Ethernet Uplink ports.
Select ports in the range 17–34 for the 40GE Uplink Port connectivity.

2. In Cisco UCS Manager, click the Equipment tab in the navigation pane.
4. Expand Ethernet Ports.
5. Select ports that are connected to the Cisco Nexus switches, right-click them, and select Configure as Uplink Port.
6. Click Yes to confirm uplink ports and click OK.

Figure 28 Cisco UCS – Ethernet Uplink Port FI-A Configuration Example

8. Expand Ethernet Ports.
9. Select ports that are connected to the Cisco Nexus switches, right-click them, and select Configure as Uplink Port.
10. Click Yes to confirm the uplink ports and click OK.

Figure 29 Cisco UCS – Ethernet Uplink Port FI-B Configuration Example

Acknowledge Cisco UCS Chassis and Rack-Mount Servers

To acknowledge all Cisco UCS chassis and/or Rack Mount Servers, complete the following steps:

1. In Cisco UCS Manager, click the Equipment tab in the navigation pane.
2. Expand Chassis and select each chassis that is listed. Right-click each chassis and select Acknowledge Chassis.
3. Expand Rack-Mounts to the list the discovered servers. The servers automatically go into “Discovery” phase.
4. After a while, ensure the Discovery completes successfully and there are no major or critical faults reported for any of the servers.

Figure 30 Servers Discovery Status Complete

<table>
<thead>
<tr>
<th>Name</th>
<th>Channel ID</th>
<th>Model</th>
<th>User L.</th>
<th>Netw.</th>
<th>Status</th>
<th>Fault</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serve 1</td>
<td>10.0.0.5</td>
<td>UCS B200-M5</td>
<td>112</td>
<td>112</td>
<td>0.0</td>
<td>N/A</td>
</tr>
<tr>
<td>Serve 1</td>
<td>10.0.0.6</td>
<td>UCS B200-M5</td>
<td>112</td>
<td>112</td>
<td>0.0</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Create LAN Uplink Port Channels

Configure the LAN uplinks from FI-A and FI-B towards northbound Nexus Switches, in port-channel, for use by all of the network zones as prescribed by SAP. For example, we create port-channel 13 on FI-A and port-channel 14 on FI-B. This port channel pair will have corresponding vPCs defined on N9Ks that ensures seamless redundancy and failover for the north–south network traffic in case of IOM / VIC port failure situations [which are very rare].

It would suffice to have a port-channel pair on FI with corresponding vPC pair on N9Ks to handle traffic of all network zones provided we have enough ports to account for the desired bandwidth. In the current example, we have used two pairs of 2 x 40GE ports for the Fl<->N9K connectivity for port-channels. You could add more based on the need or use–case.

We create port channel pair 13 and 14 with two 40GE ports from FIs to the Nexus switches to cater to SAP HANA’s Client, Admin and Internal zones.

We create another port channel pair 15 and 16 with two 40GE ports from FIs to the Nexus switches that could exclusively handle bandwidth intensive SAP HANA Storage zone traffic comprising of HANA node backup network and SAP HANA NFS /hana/shared network.

To configure the necessary port channels out of the Cisco UCS environment, complete the following steps:

1. In this procedure, two port channels are created: one each from FI-A to and FI-B to uplink Cisco Nexus switches.
2. In Cisco UCS Manager, click the LAN tab in the navigation pane
4. Right-click Port Channels.
5. Select Create Port Channel.
6. Enter 13 as the unique ID of the port channel.

7. Enter FI-A-nexus-1 as the name of the port channel.

8. Click Next.

9. Select the following ports to be added to the port channel:
 - Slot ID 1 and port 17
 - Slot ID 1 and port 18

 The ports are selected here based on Uplink Port connectivity and hence very specific to this sample configuration.

10. Click >> to add the ports to the port channel.

11. Click Finish to create the port channel.

12. Click OK.

13. In the navigation pane, under LAN > LAN Cloud, expand the Fabric B tree.
14. Right-click Port Channels.

15. Select Create Port Channel.

16. Enter 14 as the unique ID of the port channel.

17. Enter FI-B-nexus-1 as the name of the port channel.

Figure 33 Cisco UCS Port Channel – Add Ports

18. Click Next.

19. Select the following ports to be added to the port channel:

 — Slot ID 1 and port 17

 — Slot ID 1 and port 18

20. Click >> to add the ports to the port channel.

21. Click Finish to create the port channel.

22. Click OK.

Configure a second set of port-channels from FI-A and FI-B to the nexus switches. This uplink port-channel could be exclusively used for backup network traffic.

23. In Cisco UCS Manager, click the LAN tab in the navigation pane

25. Right-click Port Channels.

26. Select Create Port Channel.

Figure 34 Cisco UCS – Creating Ethernet Port Channel

27. Enter 15 as the unique ID of the port channel.

28. Enter Fl-A-nexus-2 as the name of the port channel.

29. Click Next.

30. Select the following ports to be added to the port channel:
 - Slot ID 1 and port 25
 - Slot ID 1 and port 26

The ports are selected based on Uplink Port connectivity and hence very specific to this sample configuration.
31. Click >> to add the ports to the port channel.

32. Click Finish to create the port channel.

33. Click OK.

34. In the navigation pane, under LAN > LAN Cloud, expand the Fabric B tree.

35. Right-click Port Channels.

36. Select Create Port Channel.
37. Enter 16 as the unique ID of the port channel.

38. Enter FI-B-nexus-2 as the name of the port channel.

39. Click Next.

40. Select the following ports to be added to the port channel:
 - Slot ID 1 and port 25
 - Slot ID 1 and port 26

41. Click >> to add the ports to the port channel.

42. Click Finish to create the port channel.

43. Click OK.
Create FC Port Channels

Create a port-channel on FIs A and B for the uplink FC interfaces that connect to respective MDS Fabric Switches, for use by all of the specific VSAN traffic we created earlier in MDS. This port channel pair will have corresponding F-port-channel-trunks defined on MDS switches that would allow for the fabric logins from NPV enabled FIs to be virtualized over the port channel. This provides non-disruptive redundancy should individual member links fail.

To configure the necessary port channels out of the Cisco UCS environment, complete the following steps:
1. In this procedure, two port channels are created: one from fabric A to both Cisco Nexus switches and one from fabric B to both Cisco Nexus switches.

2. In Cisco UCS Manager, click the SAN tab in the navigation pane.

3. Under SAN > SAN Cloud, expand the Fabric A tree.

4. Right-click FC Port Channels.

5. Select Create FC Port Channel.

![Figure 39 Cisco UCS – Creating FC Port Channel]

6. Enter 10 as the unique ID of the port channel.

7. Enter uplink-to-MDS-A as the name of the port channel.

8. Click Next.

9. Set Port Channel Admin Speed to 16gbps. Select the following ports to be added to the port channel:
 - Slot ID 1 and port 1
 - Slot ID 1 and port 2
 - Slot ID 1 and port 3
 - Slot ID 1 and port 4

The ports are selected based on Uplink Port connectivity and hence very specific to this sample configuration.
10. Click >> to add the ports to the port channel.

11. Click Finish to create the port channel.

12. Click OK.

13. In the navigation pane, under SAN > SAN Cloud > Fabric A > FC Port Channels, select the newly created FC Port-Channel 10 Uplink-MDS-A. Under General tab on the right pane, under Properties set Port Channel Admin Speed to 16gbps. Click Save changes. Click OK.
14. In the navigation pane, under SAN > SAN Cloud, expand the Fabric B tree.

15. Right-click FC Port Channels.

16. Select Create FC Port Channel.

17. Enter 20 as the unique ID of the port channel.

18. Enter Uplink-to-MDS-B as the name of the port channel.

19. Click Next.

20. Set Port Channel Admin Speed to 16gbps. Select the following ports to be added to the port channel:
 - Slot ID 1 and port 1
 - Slot ID 1 and port 2
 - Slot ID 1 and port 3
 - Slot ID 1 and port 4

21. Click >> to add the ports to the port channel.

22. Click Finish to create the port channel.

23. Click OK.

24. In the navigation pane, under SAN > SAN Cloud > Fabric B > FC Port Channels, select the newly created FC Port-Channel 20 Uplink-MDS-B. Under General tab on the right pane, under Properties set Port Channel Admin Speed to 16gbps. Click Save changes. Click OK.
Create New Organization

For secure multi-tenancy within the Cisco UCS domain, a logical entity known as organization is created.

To create organization unit, complete the following steps:

1. In Cisco UCS Manager, on the Tool bar on right pane top click New.
2. From the drop-down menu select Create Organization.

3. Enter the Name as HANA.

4. (Optional) Enter the Description as Org for HANA.

5. Click OK to create the Organization.

Create MAC Address Pools

To configure the necessary MAC address pools for the Cisco UCS environment, complete the following steps:

1. In Cisco UCS Manager, click the LAN tab in the navigation pane.

2. Select Pools > root > Sub-Organization > HANA.

3. In this procedure, two MAC address pools are created, one for each switching fabric.

4. Right-click MAC Pools under the HANA organization.

5. Select Create MAC Pool to create the MAC address pool.

6. Enter FI-A as the name of the MAC pool.

7. (Optional) Enter a description for the MAC pool.

8. Choose Assignment Order Sequential.

9. Click Next.

10. Click Add.

11. Specify a starting MAC address.

12. The recommendation is to place 0A in the second–last octet of the starting MAC address to identify all of the MAC addresses as Fabric Interconnect A addresses.

13. Specify a size for the MAC address pool that is sufficient to support the available blade or server resources.
14. Click OK.

15. Click Finish.

16. In the confirmation message, click OK.

17. Right-click MAC Pools under the HANA organization.

18. Select Create MAC Pool to create the MAC address pool.

19. Enter FI-B as the name of the MAC pool.

20. (Optional) Enter a description for the MAC pool. Select ‘Sequential’ for Assignment order.

21. Click Next.

22. Click Add.

23. Specify a starting MAC address.
The recommendation is to place 0B in the next to last octet of the starting MAC address to identify all the MAC addresses in this pool as fabric B addresses.

24. Specify a size for the MAC address pool that is sufficient to support the available blade or server resources.

![Cisco UCS – Create MAC Pool for Fabric B](image)

25. Click OK.

26. Click Finish.

27. In the confirmation message, click OK.
You can also define separate MAC address Pool for each Network Zone to aid easy identification, if needed. Follow steps 1-16 to create MAC address pool for each Network Zone.

Create WWNN Pool

To configure the necessary WWNN pool for the Cisco UCS environment, complete the following steps:

1. In Cisco UCS Manager, click the SAN tab in the navigation pane.
2. Select Pools > root > Sub-O rganizations > HANA.
3. Right-click WWNN Pools under the HANA organization.
4. Select Create WWNN Pool to create the WWNN address pool.
5. Enter HANA-Nodes as the name of the WWNN pool.
6. (Optional) Enter a description for the WWNN pool.
7. Choose Assignment Order Sequential.
8. Click Next.
9. Click Add.
10. Specify a starting WWNN address.
11. The recommendation is to place AB in the third-last octet of the starting WWNN address to ensure uniqueness.
12. Specify a size for the WWNN pool that is sufficient to support the available blade or server resources.
Create WWPN Pool

To configure the necessary WWPN pool for the Cisco UCS environment, complete the following steps:

1. In Cisco UCS Manager, click the SAN tab in the navigation pane.

2. Select Pools > root > Sub-Organiations > HANA.
3. In this procedure, two WWPN pools are created, one for each switching fabric.

4. Right-click WWPN Pools under the HANA organization.

5. Select Create WWPN Pool to create the WWPN address pool.

6. Enter FI-A as the name of the WWPN pool.

7. (Optional) Enter a description for the WWPN pool.

8. Choose Assignment Order Sequential.

9. Click Next.

10. Click Add.

11. Specify a starting WWNN address.

12. The recommendation is to place 0A in the last but one octet of the starting MAC address to identify all of the WWPN addresses as Fabric Interconnect A addresses.

13. Specify a size for the WWPN address pool that is sufficient to support the available blade or server resources.

14. Click OK.

15. Click Finish.
16. In the confirmation message, click OK.

17. Right-click WWPN Pools under the HANA organization.

18. Select Create WWPN Pool to create the WWNN address pool.

19. Enter Fl-B as the name of the WWPN pool.

20. (Optional) Enter a description for the WWPN pool. Select ‘Sequential’ for Assignment order.

21. Click Next.

22. Click Add.

23. Specify a starting WWPN address.

⚠️ It is recommended to place 0B in the next to third-last octet of the starting WWPN address to identify all the WWPN addresses in this pool as fabric B addresses.

24. Specify a size for the WWPN address pool that is sufficient to support the available blade or server resources.

Figure 51 Cisco UCS – Create WWPN Pool for Fabric B

25. Click OK.

26. Click Finish.
27. In the confirmation message, click OK.

Figure 52 WWPN Pool Summary

<table>
<thead>
<tr>
<th>Name</th>
<th>Size</th>
<th>Assigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>WWPN Pool F-A</td>
<td>64</td>
<td>0</td>
</tr>
<tr>
<td>[20:00:00:25:B5:0A:00:00 - 20:00:00:25:B5:0A:00:3F]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WWPN Pool F-B</td>
<td>64</td>
<td>0</td>
</tr>
<tr>
<td>[20:00:00:25:B5:0B:00:00 - 20:00:00:25:B5:0B:00:3F]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Create UUID Suffix Pool

To configure the necessary universally unique identifier (UUID) suffix pool for the Cisco UCS environment, complete the following steps:

1. In Cisco UCS Manager, click the Servers tab in the navigation pane.
2. Select Pools > root > HANA
3. Right-click UUID Suffix Pools.
4. Select Create UUID Suffix Pool.
5. Enter UUID_Pool as the name of the UUID suffix pool.
6. (Optional) Enter a description for the UUID suffix pool.
7. Keep the Prefix as the Derived option.
8. Select Sequential for Assignment Order
9. Click Next.
10. Click Add to add a block of UUIDs.
11. Keep the ‘From’ field at the default setting.
12. Specify a size for the UUID block that is sufficient to support the available blade or server resources.
Add Block of IP Addresses for KVM Access

To create a block of IP addresses for server Keyboard, Video, Mouse (KVM) access in the Cisco UCS environment, complete the following steps:

1. In Cisco UCS Manager, click the LAN tab in the navigation pane.

3. In the Actions pane, select Create Block of IP Addresses.

4. Enter the starting IP address of the block and the number of IP addresses required, and the subnet and gateway information.

Figure 54 Cisco UCS - Create IP Pool

![Create Block of IPv4 Addresses](image)

5. Click OK to create the IP block.

6. Click OK in the confirmation message.

Power Policy

To run Cisco UCS with two independent power distribution units, the redundancy must be configured as Grid. Complete the following steps:

1. In Cisco UCS Manager, click the Equipment tab in the navigation pane and select Equipment in the list on the left.

2. In the right pane, click the Policies tab.

3. Under Global Policies, set the Redundancy field in Power Policy to Grid.

4. Click Save Changes.

5. Click OK.
Power Control Policy

The Power Capping feature in Cisco UCS is designed to save power with a legacy data center use cases. This feature does not contribute much to the high performance behavior of SAP HANA. By choosing the option "No Cap" for power control policy, the SAP HANA server nodes will not have a restricted power supply. It is recommended to have this power control policy to make sure sufficient power supply for high performance and critical applications like SAP HANA.

To create a power control policy for the Cisco UCS environment, complete the following steps:

1. In Cisco UCS Manager, click the Servers tab in the navigation pane.
2. Select Policies > root.
4. Select Create Power Control Policy.
5. Enter HANA as the Power Control Policy name. (Optional) provide description.
6. Set Fan Speed Policy to Performance.
7. Change the Power Capping setting to No Cap.
8. Click OK to create the power control policy.

9. Click OK

Create Host Firmware Package

Firmware management policies allow the administrator to select the corresponding packages for a given server configuration. These policies often include packages for adapter, BIOS, board controller, FC adapters, host bus adapter (HBA) option ROM, and storage controller properties.

To create a firmware management policy for a given server configuration in the Cisco UCS environment, complete the following steps:

1. In Cisco UCS Manager, click the Servers tab in the navigation pane.

2. Select Policies > root.

3. Right-click Host Firmware Packages.

4. Select Create Host Firmware Package.

5. Enter HANA-FW as the name of the host firmware package.

7. Select the version 3.2(3g) for both the Blade and Rack Packages.

8. Click OK to create the host firmware package.

9. Click OK.

Figure 57 Host Firmware Package

Create Host Firmware Package

Name: HANA-FW
Description:

How would you like to configure the Host Firmware Package?

- Simple
- Advanced

Blade Package: 3.2(3g)B
Rack Package: 3.2(3g)C
Service Pack: <not set>

The images from Service Pack will take precedence over the images from Blade or Rack Package

Excluded Components:

- Adapter
- BIOS
- Board Controller
- CMIC
- FC Adapters
- Flex Flash Controller
- GPUs
- HBA Option ROM
- Host NIC
- Host NIC Option ROM
- Local Disk
- NVME Msstruct Firmware
- PSU
- SAS Expander

Create Server BIOS Policy

To get best performance for HANA it is required to configure the Server BIOS accurately. To create a server BIOS policy for the Cisco UCS environment, complete the following steps:

1. In Cisco UCS Manager, click the Servers tab in the navigation pane.

2. Select Policies > root > Sub-Organization > HANA.

4. Select Create BIOS Policy.
5. Enter HANA-BIOS as the BIOS policy name.
6. Select “Reboot on BIOS Settings Change”. Click OK.
7. Select the BIOS policy selected on the navigation pane.
8. On the ‘Main’ sub-heading, change the Quiet Boot setting to Disabled.

Figure 58 Create Server BIOS Policy

<table>
<thead>
<tr>
<th>Servers / Policies / root / Sub-Organizations / HANA / BIOS Policies / HANA-BIOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main</td>
</tr>
<tr>
<td>Actions</td>
</tr>
<tr>
<td>Delete</td>
</tr>
<tr>
<td>Show Policy Usage</td>
</tr>
<tr>
<td>Use Global</td>
</tr>
<tr>
<td>Properties</td>
</tr>
<tr>
<td>Name</td>
</tr>
<tr>
<td>Description</td>
</tr>
<tr>
<td>Owner</td>
</tr>
<tr>
<td>Reboot on BIOS Settings Change</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BIOS Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDN Control</td>
<td>Platform Default</td>
</tr>
<tr>
<td>Front panel lockout</td>
<td>Platform Default</td>
</tr>
<tr>
<td>POST error pause</td>
<td>Platform Default</td>
</tr>
<tr>
<td>Quiet Boot</td>
<td>Disabled</td>
</tr>
<tr>
<td>Resume on AC power loss</td>
<td>Platform Default</td>
</tr>
</tbody>
</table>

9. Click Next.
10. The recommendation from SAP for SAP HANA is to disable all Processor C States. This will force the CPU to stay on maximum frequency and allow SAP HANA to run with best performance. On the Advanced tab, under Processor sub-tab, make sure Processor C State is disabled.

![Figure 59 Processor Settings in BIOS Policy](image)

11. No changes required at the Intel Direct IO sub-tab.

12. In the RAS Memory sub-tab select maximum-performance, enable NUMA and set LV DDR Mode to performance-mode.
13. Click Next.

14. In the Serial Port sub-tab, the Serial Port A must be set to enabled.

15. No changes required at the USB, PCI, QPI, LOM and PCIe Slots, Trusted Platform as well as Graphics Configuration sub-tabs.

16. No changes required at the Boot Options tab.
17. On the Server Management tab, configure the Console Redirection to serial-port-a with the BAUD Rate 115200 and enable the feature Legacy OS redirect. This is used for Serial Console Access over LAN to all SAP HANA servers.
Create Serial over LAN Policy

The Serial over LAN policy is required to get console access to all the SAP HANA servers through SSH from the management network. This is used in case of the server hang or a Linux kernel crash, where the dump is required. To configure the speed in the Server Management Tab of the BIOS Policy, complete the following steps:

1. In Cisco UCS Manager, click the Servers tab in the navigation pane.
2. Select Policies > root > Sub-Organization > HANA.
3. Right-click the Serial over LAN Policies.
4. Select Create Serial over LAN Policy.
5. Enter SoL-Console as the Policy name.
6. Select Serial over LAN State to enable.
7. Change the Speed to 115200.
8. Click OK.

Figure 64 Serial Over LAN Policy

Update Default Maintenance Policy

It is recommended to update the default Maintenance Policy with the Reboot Policy “User Ack” for the SAP HANA server. This policy will wait for the administrator to acknowledge the server reboot for the configuration changes to take effect.

To update the default Maintenance Policy, complete the following steps:

1. In Cisco UCS Manager, click the Servers tab in the navigation pane.
2. Select Policies > root.
5. Click Save Changes.

6. Click OK to accept the change.

Figure 65 Maintenance Policy

<table>
<thead>
<tr>
<th>General</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actions</td>
<td>Properties</td>
</tr>
<tr>
<td>Delete</td>
<td>Name: default</td>
</tr>
<tr>
<td>Show Policy Usage</td>
<td>Description:</td>
</tr>
<tr>
<td>Use Global</td>
<td>Owner: Local</td>
</tr>
<tr>
<td>Soft Shutdown Timer: 150 Secs</td>
<td>Storage Config Deployment Policy: Immediate, User Ack</td>
</tr>
<tr>
<td>Reboot Policy: Immediate, User Ack, Timer Automatic</td>
<td>On Next Reboot: Apply pending changes at next reboot</td>
</tr>
</tbody>
</table>

Set Jumbo Frames in Cisco UCS Fabric

The core network requirements for SAP HANA are covered by Cisco UCS defaults. Cisco UCS is based on 40GbE and provides redundancy through the Dual Fabric concept. The Service Profile is configured to distribute the traffic across Fabric Interconnect A and B. During normal operation, the traffic in the inter-node flows on FI A and the NFS traffic on FI B. The inter-node traffic flows from a Blade Server to the Fabric Interconnect A and back to other Blade Server.

To configure jumbo frames and enable quality of service in the Cisco UCS fabric, complete the following steps:

1. In Cisco UCS Manager, click the LAN tab in the navigation pane.
2. Select LAN > LAN Cloud > QoS System Class.
3. In the right pane, click the General tab.
4. On the MTU Column, enter 9216 in the box.
5. Check Enabled Under Priority for Silver.
6. Click Save Changes in the bottom of the window.
7. Click OK.
Network Control Policy

Update Default Network Control Policy to Enable CDP

CDP needs to be enabled to learn the MAC address of the End Point. To update default Network Control Policy, complete the following steps:

1. In Cisco UCS Manager, click the LAN tab in the navigation pane.
3. In the right pane, click the General tab.
4. For CDP: select Enabled radio button.
5. Click Save Changes in the bottom of the window.
6. Click OK.
Create Network Control Policy for Internal Network

In order to keep the vNIC links up in case there is a Nexus failure, you need to create the Network Control Policy for Internal Network. To create Network Control Policy for Internal Network, complete the following steps:

1. In Cisco UCS Manager, click the LAN tab in the navigation pane.
3. Enter Internal as the Name of the Policy.
4. For CDP: select Enabled radio button.
5. For Action on Uplink Fail: select Warning radio button.
6. Click OK.
LAN Configurations

Within Cisco UCS, all the network types for an SAP HANA system are manifested by defined VLANs. Network design guideline from SAP recommends seven SAP HANA related networks and two infrastructure related networks.

Even though nine VLANs are defined, VLANs for all the networks are not necessary if the solution will not use those networks. For example if the Replication Network is not used in the solution, then VLAN ID 225 need not be created.

The VLAN IDs can be changed if required to match the VLAN IDs in the customer’s network – for example, ID 221 for backup should match the configured VLAN ID at the customer uplink network switches.

Create VLANs

To configure the necessary VLANs for the Cisco UCS environment, complete the following steps:

1. In Cisco UCS Manager, click the LAN tab in the navigation pane.

 In this procedure, eight VLANs are created.

2. Select LAN > LAN Cloud.
3. Right-click VLANs.
4. Select Create VLANs.
5. Enter HANA-Internal as the name of the VLAN to be used for HANA Node to Node network.
6. Keep the Common/Global option selected for the scope of the VLAN.
7. Enter <<var_internal_vlan_id>> as the ID of the HANA Node to Node network.

8. Keep the Sharing Type as None.

9. Click OK, and then click OK again.

Figure 69 Create VLAN for Internode

Create VLANs

VLAN Name/PREFIX: HANA-Internal
Multicast Policy Name: <not set>

Common/Global Fabric A Fabric B Both Fabrics Configured Differently

You are creating global VLANs that map to the same VLAN IDs in all available fabrics. Enter the range of VLAN IDs (e.g. "2009-2019", "29,35,40-45", "23", "23,34-45")

VLAN IDs: 220
Sharing Type: None Primary Isolated Community

10. Repeat the Steps 1-9 above for each VLAN creation.

Figure 70 Create VLAN for AppServer

Create VLANs

VLAN Name/PREFIX: HANA-AppServer
Multicast Policy Name: <not set>

Common/Global Fabric A Fabric B Both Fabrics Configured Differently

You are creating global VLANs that map to the same VLAN IDs in all available fabrics. Enter the range of VLAN IDs (e.g. "2009-2019", "29,35,40-45", "23", "23,34-45")

VLAN IDs: 223
Sharing Type: None Primary Isolated Community

12. Create VLAN for HANA-Backup.
13. Create VLAN for HANA-Client.

14. Create VLAN for HANA-DataSource.
15. Create VLAN for HANA-Replication.

16. Create VLAN HANA-NFSshared for /hana/shared NFS network. The VLAN ID used defined here could be same as of that of the network providing Active Directory Services/DNS in the customer LAN. In the validation setup we have had a windows Server VM in Management PoD providing the management services and the same VLAN ID was used of this to make the solution design simpler.
Figure 75 Create VLAN for /hana/shared NFS Network

Create VLANs

<table>
<thead>
<tr>
<th>VLAN Name/Prefix</th>
<th>HANA-NFSshared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multicast Policy Name</td>
<td><not set></td>
</tr>
</tbody>
</table>

- Common/Global
- Fabric A
- Fabric B
- Both Fabrics Configured Differently

You are creating global VLANs that map to the same VLAN IDs in all available fabrics. Enter the range of VLAN IDs (e.g., "2009-2019", "29,35,40-45", "23", "23,34-45")

<table>
<thead>
<tr>
<th>VLAN IDs</th>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sharing Type</td>
<td>None Primary Isolated Community</td>
</tr>
</tbody>
</table>

17. Create VLAN for Management.

Figure 76 Create VLAN for Management

Create VLANs

<table>
<thead>
<tr>
<th>VLAN Name/Prefix</th>
<th>HANA-Mgmt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multicast Policy Name</td>
<td><not set></td>
</tr>
</tbody>
</table>

- Common/Global
- Fabric A
- Fabric B
- Both Fabrics Configured Differently

You are creating global VLANs that map to the same VLAN IDs in all available fabrics. Enter the range of VLAN IDs (e.g., "2009-2019", "29,35,40-45", "23", "23,34-45")

<table>
<thead>
<tr>
<th>VLAN IDs</th>
<th>76</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sharing Type</td>
<td>None Primary Isolated Community</td>
</tr>
</tbody>
</table>

The list of created VLANs is shown below:
Create VLAN Groups

For easier management and bandwidth allocation to a dedicated uplink on the Fabric Interconnect, VLAN Groups are created within the Cisco UCS. SAP groups the networks needed by HANA system into following zones which could be translated to VLAN groups in Cisco UCS configuration:

- Client Zone – including AppServer, Client and DataSource networks
- Internal Zone – including Inter-node and System Replication networks
- Storage Zone – including Backup and IP storage networks
- And optional Admin zone – including Management, PXE Boot network, OS cluster network, if any

To configure the necessary Admin zone – including Management, PXE Boot network, OS cluster network, if any.

1. In Cisco UCS Manager, click the LAN tab in the navigation pane.

In this procedure, three VLAN Groups are created. Based on the solution requirement create VLAN groups as needed by the implementation scenario.

2. Select LAN > LAN Cloud.
3. Right-click VLAN Groups.
4. Select Create VLAN Groups.
5. Enter Admin-Zone as the name of the VLAN Group used for Infrastructure network.
6. Select HANA-Mgmt.
7. Click Next.

8. Click Next on Add Uplink Ports, since you will use port-channel.

9. Choose port-channels created [13 & 14 in this example configuration] for uplink network. Click >>

10. Click Finish.

11. Create VLAN Group for Client Zone. Select HANA-AppServer, HANA-Client and HANA-DataSource networks to be part of this VLAN group.
12. Click Next.

13. Click Next on Add Uplink Ports, since you will use port-channel.

14. Choose port-channels [13 & 14 in this example configuration] created for uplink network. Click >>

15. Click Finish.

16. Similarly, create VLAN Group for Internal Zone. Select HANA-Internal network. Optionally select the HANA-Replication, if used in the setup.
17. Click Next.

18. Click Next on Add Uplink Ports, since you will use port-channel.

19. Choose port-channels (13 and 14 in this example configuration) created for uplink network. Click >>

20. Click Finish.

21. Similarly, create VLAN Groups for Storage Zone. Select the HANA-NFSshared network. Optionally select HANA-Backup network, if used in the setup.
22. Click Next.

23. Click Next on Add Uplink Ports, since you will use port-channel.

24. Choose other pair of port-channels (15 and 16 in this example configuration) created for Storage Zone.

25. Click Finish.

26. More VLAN groups, if needed could be created following the above steps. VLAN Groups created in the Cisco UCS.
For each VLAN Group a dedicated Ethernet Uplink Port or Port Channel can be selected, if the use-case demands. Alternatively, a single uplink Port Channel with more ports to enhance the bandwidth could also be used if that suffices.

Create vNIC Template

Each VLAN is mapped to a vNIC template to specify the characteristic of a specific network. The vNIC template configuration settings include MTU size, Failover capabilities and MAC-Address pools.

To create vNIC templates for the Cisco UCS environment, complete the following steps:

1. In Cisco UCS Manager, click the LAN tab in the navigation pane.
2. Select Policies > root > Sub-Organization > HANA.
3. Right-click vNIC Templates.
4. Select Create vNIC Template.
5. Enter HANA-Internal as the vNIC template name.
7. Check the Enable Failover checkbox.
8. Under Target, make sure that the VM checkbox is unchecked.
9. Select Updating Template as the Template Type.

10. Under VLANs, check the checkboxes for HANA-Internal.

11. Set HANA-Internal as the native VLAN.

12. For MTU, enter 9000.

13. In the MAC Pool list, select FI-A.

14. For Network Control Policy Select Internal from drop-down list.
15. Click OK to create the vNIC template.
16. Click OK.
For most SAP HANA use cases the network traffic is well distributed across the two Fabrics (Fabric A and Fabric B) using the default setup. In special cases, it can be required to rebalance this distribution for better overall performance. This can be done in the vNIC template with the Fabric ID setting. The MTU settings must match the configuration in customer data center. MTU setting of 9000 is recommended for best performance.

17. Similarly create vNIC template for each Network.

18. Create a vNIC template for HANA Nodes OS Cluster network.
19. Create a vNIC template for AppServer Network.
Figure 89 Create vNIC Template for AppServer Network

Create vNIC Template

<table>
<thead>
<tr>
<th>Name</th>
<th>HANA-AppServer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>Fabric ID</td>
<td>Fabric A</td>
</tr>
<tr>
<td></td>
<td>Fabric B</td>
</tr>
<tr>
<td></td>
<td>☑️ Fabric A</td>
</tr>
<tr>
<td></td>
<td>Fabric B</td>
</tr>
<tr>
<td></td>
<td>☑️ Enable</td>
</tr>
<tr>
<td>Redundancy</td>
<td></td>
</tr>
<tr>
<td>Redundancy Type</td>
<td>☑️ No Redundancy</td>
</tr>
<tr>
<td></td>
<td>☑️ Primary Template</td>
</tr>
<tr>
<td></td>
<td>☑️ Secondary Template</td>
</tr>
<tr>
<td>Target</td>
<td></td>
</tr>
<tr>
<td></td>
<td>☑️ Adapter</td>
</tr>
<tr>
<td></td>
<td>☑️ VM</td>
</tr>
<tr>
<td>Warning</td>
<td></td>
</tr>
</tbody>
</table>

If VM is selected, a port profile by the same name will be created.
If a port profile of the same name exists, and updating template is selected, it will be overwritten.

Template Type: ☑️ Initial Template ☑️ Updating Template

VLANs

<table>
<thead>
<tr>
<th>Name</th>
<th>Native VLAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>HANA-AppServer</td>
<td>☑️</td>
</tr>
<tr>
<td>HANA-Backup</td>
<td>☑️</td>
</tr>
<tr>
<td>HANA-Client</td>
<td>☑️</td>
</tr>
<tr>
<td>HANA-DataSource</td>
<td>☑️</td>
</tr>
<tr>
<td>HANA-Internal</td>
<td>☑️</td>
</tr>
</tbody>
</table>

Create VLAN

<table>
<thead>
<tr>
<th>ODN Source</th>
<th>vNIC Name</th>
<th>User Defined</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTU</td>
<td>9009</td>
<td></td>
</tr>
<tr>
<td>MAC Pool</td>
<td>F-I-A[126/128]</td>
<td></td>
</tr>
<tr>
<td>QoS Policy</td>
<td><not set></td>
<td></td>
</tr>
<tr>
<td>Network Control Policy</td>
<td><not set></td>
<td></td>
</tr>
<tr>
<td>Pin Group</td>
<td><not set></td>
<td></td>
</tr>
<tr>
<td>State Threshold Policy</td>
<td>default</td>
<td></td>
</tr>
<tr>
<td>Connection Policies</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- ☑️ Dynamic vNIC
- ☑️ vNIC
- ☑️ VMO

Dynamic vNIC Connection Policy: <not set>
20. Create a vNIC template for Backup Network.

Figure 90 Create vNIC Template for Backup Network

Create vNIC Template

<table>
<thead>
<tr>
<th>Name</th>
<th>HANA-Backup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>Fabric ID</td>
<td>○ Fabric A ○ Fabric B ○ Fabloc</td>
</tr>
<tr>
<td>Redundancy Type</td>
<td>○ No Redundancy ○ Primary Template ○ Secondary Template</td>
</tr>
</tbody>
</table>

Target

- [] Adapter
- [] VM

Warning

If VM is selected, a port profile by the same name will be created. If a port profile of the same name exists, and updating template is selected, it will be overwritten.

<table>
<thead>
<tr>
<th>VLANs</th>
<th>VLAN Groups</th>
</tr>
</thead>
</table>

Select

<table>
<thead>
<tr>
<th>Name</th>
<th>Native VLAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>HANA-AppServer</td>
<td></td>
</tr>
<tr>
<td>HANA-Backup</td>
<td>○</td>
</tr>
<tr>
<td>HANA-Client</td>
<td>○</td>
</tr>
<tr>
<td>HANA-DbsSrc</td>
<td>○</td>
</tr>
<tr>
<td>HANA-Internal</td>
<td>○</td>
</tr>
<tr>
<td>HANA-Non</td>
<td>○</td>
</tr>
</tbody>
</table>

Create VLAN

<table>
<thead>
<tr>
<th>CDN Source</th>
<th>○ vNIC Name ○ User Defined</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTU</td>
<td>9000</td>
</tr>
<tr>
<td>MAC Pool</td>
<td>[F:012481222]</td>
</tr>
<tr>
<td>CoS Policy</td>
<td><not set></td>
</tr>
<tr>
<td>Network Control Policy</td>
<td><not set></td>
</tr>
<tr>
<td>Port Group</td>
<td><not set></td>
</tr>
<tr>
<td>Stats Threshold Policy</td>
<td>default</td>
</tr>
<tr>
<td>Dynamic vNIC ○ vNIC ○ VM ○</td>
<td>Dynamic vNIC Connection Policy</td>
</tr>
</tbody>
</table>

21. Create a vNIC template for Client Network.
Create a vNIC template for DataSource Network.
23. Create a vNIC template for Replication Network.
Create vNIC Template

Name: HANA-Replication

Description:

Fabric ID
- Fabric A
- Fabric B
- Enable

Redundancy
- No Redundancy
- Primary Template
- Secondary Template

Target
- Adapter
- VM

Warning
If VM is selected, a port profile by the same name will be created.
If a port profile of the same name exists, and updating template is selected, it will be overwritten.

Template Type
- Initial Template
- Updating Template

<table>
<thead>
<tr>
<th>VLANs</th>
<th>VLAN Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Select</th>
<th>Name</th>
<th>Native VLAN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HANA-DataSource</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HANA-Internal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HANA-Mgmt</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HANA-NFIShared</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HANA-Internal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HANA-Replication</td>
<td></td>
</tr>
</tbody>
</table>

CDN Source
- vNIC Name
- User Defined

MTU: 9000

MAC Pool: Fc-A(128/128)

QoS Policy: <not set>

Network Control Policy: <not set>

Pin Group: <not set>

Stats Threshold Policy: default

Connection Policies
- Dynamic vNIC
- usVNIC
- VMQ

Dynamic vNIC Connection Policy: <not set>
24. Create a vNIC template for Management Network.

Figure 94 Create vNIC Template for Management Network

Create vNIC Template

<table>
<thead>
<tr>
<th>Name</th>
<th>HANA-Mgmt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>Fabric ID</td>
<td>Fabric A, Fabric B</td>
</tr>
<tr>
<td></td>
<td>Follower</td>
</tr>
<tr>
<td>Redundancy</td>
<td>No Redundancy</td>
</tr>
<tr>
<td></td>
<td>Enable</td>
</tr>
</tbody>
</table>

Target

- Adapter
- VM

Warning

If VM is selected, a port profile by the same name will be created. If a port profile of the same name exists, and updating template is selected, it will be overwritten.

Template Type

- Initial Template
- Updating Template

VLANs

<table>
<thead>
<tr>
<th>VLAN Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Create VLAN

<table>
<thead>
<tr>
<th>CDI Source</th>
<th>vNIC Name</th>
<th>User Defined</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTU</td>
<td>1500</td>
<td></td>
</tr>
<tr>
<td>MAC Pool</td>
<td>F-1(126/128)</td>
<td></td>
</tr>
<tr>
<td>CoS Policy</td>
<td><not set></td>
<td></td>
</tr>
<tr>
<td>Network Control Policy</td>
<td><not set></td>
<td></td>
</tr>
<tr>
<td>Din Group</td>
<td><not set></td>
<td></td>
</tr>
<tr>
<td>Stats Threshold Policy</td>
<td>default</td>
<td></td>
</tr>
</tbody>
</table>

Connection Policies

- Dynamic vNIC
- vNIC
- VMQ

Dynamic vNIC Connection Policy: <not set>

The list of created vNIC Templates for SAP HANA is shown below:
SAN Configurations

VSAN is a security mechanism for storage which can be compared to VLANs for the networks.

The connectivity to the storage is achieved through northbound Cisco storage devices – MDS Fabric Switches. It is important to note that northbound storage physical connectivity does not support vPCs like LAN connectivity. For the same reason, FI-A connects via MDS-A and FI-B connects via MDS-B to the storage. Fabric Interconnects do not cross connect with MDS switches.

Port channel configuration to combine multiple storage FC uplink ports to provide physical link redundancy is possible.

The configurations are carried out in the SAN Cloud node on UCSM.
Create VSANs

To configure the necessary VSANs for the Cisco UCS environment, complete the following steps:

1. In Cisco UCS Manager, click the SAN tab in the navigation pane.

In this procedure, two VSANs are created. One each for Fabric A and Fabric B.

2. Select SAN > SAN Cloud.

3. Right-click VSANs.

4. Select Create VSAN.

5. Enter Fab-A as the name of the VSAN to be used for Fabric-A.

6. Retain ‘Disabled’ for FC Zoning option and select Fabric A. Enter <<var_fabric-A_vsan_id>> as the ID of the VSAN ID. Use the same value for FCOE VLAN ID.

7. Click OK and then click OK again.

Figure 96 Create VSAN for Fabric A

8. Select SAN > SAN Cloud.

9. Right-click VSANs.

10. Select Create VSANs.

11. Enter Fab-B as the name of the VSAN to be used for Fabric-B.

12. Retain ‘Disabled’ for FC Zoning option and select Fabric A. Enter <<var_fabric-B_vsan_id>> as the ID of the VSAN ID. Use the same value for FCOE VLAN ID.

13. Click OK and then click OK again.
Assign Respective Fabric FC Channels to Created VSAN

To assign the fc port channels to respective fabric VSAN that we just created, complete the following steps:

1. In Cisco UCS Manager, click the SAN tab > SAN Cloud > Fabric A > FC Port Channels>
2. Select the configured FC Port Channel.
3. On the right pane, change the VSAN information from default (1) to Fab-A VSAN 10 created for Fabric-A.
4. Make sure 16gbps is selected for Port Channel Admin Speed. Select Save changes. Click Yes. Click OK. After the settings are saved, the Port Channel status changes to Up.

5. Click the SAN tab > SAN Cloud > Fabric B > FC Port Channels >.

6. Select the configured FC Port Channel.

7. On the right pane, change the VSAN information from default (1) to Fab-B VSAN 20 created for Fabric-B. Ensure Port Channel Admin Speed is set to 16gbps.
8. Select Save changes. Click Yes and click OK.

**Figure 101 **VSAN Membership Setting for FI-B FC Uplink Port Channel

<table>
<thead>
<tr>
<th>SAN</th>
<th>SAN Cloud</th>
<th>Fabric B</th>
<th>FC Port Channels</th>
<th>FC Port-Channel 20 Uplink-to-MDS-B</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>Ports</td>
<td>Faults</td>
<td>Events</td>
<td>Statistics</td>
</tr>
<tr>
<td>Status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall Status: Up</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additional Info:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enable Port Channel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disable Port Channel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Add Port</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Properties	
ID	20
Fabric ID	B
Port Type	Aggregation
Transport Type	FC
Name	Uplink-to-MDS-B
Description	
VSAN	Fabric B/vean Fab-B(2)
Port Channel Admin Speed	16gbps
Operational Speed(Gbps)	64

Create vHBA Template

⚠️ In this procedure, two vHBA templates are created. One each for Fabric A and Fabric B.

1. In Cisco UCS Manager, click on tab SAN > Policies > root > Sub-O rganizations > HANA. Right-click vHBA Templates to "Create vHBA Template."

2. First create a template for Fabric A. Choose vHBA-A for name.

3. Optionally provide a description.

4. Select Fabric ID A

5. Select VSAN Fab-A and Template Type as Updating template.

6. Select WWPN Pool - FI-A.

7. Click Ok and Click OK.
8. Create a template for Fabric B. Choose vHBA-B for name.

9. In Cisco UCS Manager, click on tab SAN > Policies > root > Sub-Organizations > HANA. Right-click vHBA Templates to “Create vHBA Template.”

10. Choose vHBA-B for name.

11. Optionally provide a description.

12. Select Fabric ID B.

13. Select VSAN Fab-B and Template Type as Updating template.

14. Select WWPN Pool as FI-B.

15. Click Ok and Click OK.
Create SAN Connectivity Policy

When the physical connectivity is established, the following will configure the zoning for the servers and SAN:

- **Storage connection policies**: This configures the storage connectivity taking into account the WWPN Target numbers for the SAN. Since the Zoning is handled by the MDS switches and that FIs aren’t direct attached to the Storage, we do not configure this Storage side connection policy.

- **SAN connectivity policies configuration**: This configures vHBAs for the servers which will provide WWPN Initiator numbers for the servers. This server side configuration is needed to prepare the servers for connection to storage.

To configure the storage connection policy, complete the following steps:

1. Log into UCS Manager.
2. Click the SAN tab in the Navigation pane.

Figure 104 Create SAN Connectivity Policy

<table>
<thead>
<tr>
<th>SAN / Policies / root / Sub-Organizations / HANA / SAN Connectivity Policies</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAN Connectivity Policies</td>
</tr>
<tr>
<td>Name</td>
</tr>
<tr>
<td>Description: SAN connectivity policy for HANA nodes</td>
</tr>
</tbody>
</table>

A server is identified on a SAN by its World Wide Node Name (WWNN). Specify how the system should assign a WWNN to the server associated with this profile.

World Wide Node Name

<table>
<thead>
<tr>
<th>WWNN Assignment:</th>
<th>Select (pool default used by default)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Create WWNN Pool

Select WWNN assignment option.

- If nothing is selected, the WWNN will be assigned from the default pool.

WARNING: The selected pool does not contain any available entities. You can select it, but it is recommended that you add entities to it.

<table>
<thead>
<tr>
<th>Name</th>
<th>WWNN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No data available

4. Provide name as HANA-SAN.

5. Optionally add a Description.

6. Click Add to add the vHBAs from the vHBA templates previously created.
7. In the Create vHBA window, provide a name as vhba-a and check “Use vHBA Template” option. Select vHBA-A from the vHBA Template dropdown and Linux for the Adapter Policy. Click OK.

![Figure 105 Create vHBA for Fabric A](image)

8. Click Add on the ‘Create SAN Connectivity Policy’ window to add another vHBA.

9. In the Create vHBA window, provide name as vhba-b and check “Use vHBA Template” option. Select vHBA-B from the vHBA Template dropdown list and Linux for the Adapter Policy.

![Figure 106 Create vHBA for Fabric B](image)

10. Click OK.
11. Click OK.
Create Boot Policy for SAN Boot

It is strongly recommend to use "Boot from SAN" to realize full benefits of Cisco UCS stateless computing feature such as service profile mobility.

The ports on the storage controllers of Pure Storage FlashArray//X are cross connected with the MDS switches so that we have alternate paths to the LUNs, in addition to the built-in redundancy and path management features of the storage array itself.

The SAN Ports CT0.FC0, CT0.FC2 of Pure Storage FlashArray//X Controller 0 are connected to Cisco MDS 9148S Switch A and CT0.FC1, CT0.FC3 are connected to Cisco MDS 9148S Switch B. Similarly, the SAN Ports CT1.FC0, CT1.FC2 of Pure Storage FlashArray//X Controller 1 are connected to Cisco MDS 9148S Switch A and CT1.FC1, CT1.FC3 are connected to Cisco MDS 9148S Switch B.

You can determine the WWPN information of these storage array target ports from the Purity//FA GUI.
For the SAN Boot policy configure the SAN primary's primary-target to be port CT0.FC0 and SAN primary's secondary-target to be port CT1.FC0 of the array. Similarly, the SAN secondary's primary-target should be port CT1.FC1 and SAN secondary's secondary-target should be port CT0.FC1 of the array.

You have to create SAN Boot primary (hba0) and SAN Boot secondary (hba1) in create boot policy by entering WWPN of Pure Storage FlashArray//X FC Ports.

To create boot policies for the Cisco UCS environments, complete the following steps:

1. Go to tab Servers > Policies > root > Sub-Organizations > HANA > Boot Policies. Right-click and create HANA-sanboot as the name of the boot policy as shown in below figure.

2. Expand the Local Devices drop-down menu and Choose Add CD-ROM. Expand the vHBA drop-down menu and Choose Add SAN Boot. In the Add SAN Boot dialog box, select type as 'Primary' and enter "hba0" in the vHBA field and make sure type is selected as “Primary”.

3. Make sure the “Enforce vNIC/vHBA/iSCSI Name” option is unchecked.
4. Click OK to add SAN Boot. Then choose “Add SAN Boot Target.”

5. Keep 1 as the value for Boot Target LUN. Enter the WWPN for FC port CT0.FC0 of Pure Storage and add click OK.

LUN ID 0 is reserved for internal use in Pure Storage FlashArray//X; it is recommended to use LUN ID 1 for Boot LUN.
6. Add a secondary SAN Boot target into same hba0 and enter boot target LUN as 1 and WWPN for FC port CT1.FC0 of Pure Storage FlashArray//X and add SAN Boot Secondary Target. Click OK.

7. From the vHBA drop-down list and Choose Add SAN Boot. In the Add SAN Boot dialog box, enter "hba1" in the vHBA field. Click OK.
8. Click OK to SAN Boot. Choose add SAN Boot Target.

9. Keep 1 as the value for Boot Target LUN. Enter the WWPN for FC port CT1.FC1 of Pure Storage FlashArray/IX and add SAN Boot Primary Target. Click OK.
10. Add secondary SAN Boot target into same hba1 and enter boot target LUN as 1 and WWPN for FC port CT0.FC1 of Pure Storage FlashArray//X and add SAN Boot Secondary Target. Click OK. Click OK.
11. Click OK and click OK for the Create Boot Policy pop-up.

12. After creating the FC boot policies, you can view the boot order in the Cisco UCS Manager GUI. To view the boot order, navigate to Servers > Policies > root > Sub-O rganizations > HANA > Boot Policies> HANA-sanboot to view the boot order in the right pane of the UCS Manager as shown below.
Create Service Profile Templates for SAP HANA Nodes

The LAN, SAN configurations and relevant SAP HANA policies must be defined prior to creating, a Service Profile Template.

To create the service profile template, complete the following steps:

1. In Cisco UCS Manager, click the Servers tab in the navigation pane.
2. Select Service Profile Templates > root > Sub-Organization > HANA.
3. Right-click HANA.
4. Select Create Service Profile Template to open the Create Service Profile Template wizard.

 a. Identify the service profile template:
 i. Enter HANA-node as the name of the service profile template.
 ii. Select the Updating Template option.
 iii. Under UUID, select UUID_pool as the UUID pool. Optionally add a Description.
 iv. Click Next.
5. Storage Provisioning: Nothing to be done here.

6. Click Next.
7. Networking:

 a. Keep the default settings for Dynamic vNIC Connection Policy.
b. Select the Expert option for ‘How would you like to configure LAN connectivity’ question.

c. Click the Add button to add a vNIC to the template.

d. In the Create vNIC dialog box, enter HANA-Internal as the name of the vNIC.

e. Check the Use vNIC Template checkbox.

f. In the vNIC Template list, select HANA-Internal.

g. In the Adapter Policy list, select Linux.

h. Click OK to add this vNIC to the template.

8. Repeat steps a-h for each vNIC.
9. Add vNIC for HANA-NFSshared

Figure 121 Service Profile Template vNIC HANA-NFSshared

Create vNIC

- **Name**: HANA-NFSshared
- **Use vNIC Template**: ✓
- **Redundancy Pair**: □
- **vNIC Template**: HANA-NFSshared

Adapter Performance Profile

- **Adapter Policy**: Linux

10. Add vNIC for HANA-Client.

Figure 122 Service Profile Template vNIC Hana-Client

Create vNIC

- **Name**: HANA-Client
- **Use vNIC Template**: ✓
- **Redundancy Pair**: □
- **vNIC Template**: HANA-Client

Adapter Performance Profile

- **Adapter Policy**: Linux

Figure 123 Service Profile Template vNIC AppServer

Create vNIC

Name: HANA-AppServer
Use vNIC Template: ✔
Redundancy Pair: ❌

vNIC Template: HANA-AppServer

Adapter Performance Profile

Adapter Policy: Linux

Create vNIC Template
Create Ethernet Adapter Policy

12. Add vNIC for HANA-DataSource.

Figure 124 Service Profile Template vNIC DataSource

Create vNIC

Name: HANA-DataSource
Use vNIC Template: ✔
Redundancy Pair: ❌

vNIC Template: HANA-DataSource

Adapter Performance Profile

Adapter Policy: Linux

Create vNIC Template
Create Ethernet Adapter Policy

13. Add vNIC for HANA-Backup.

15. Add vNIC for Mgmt.
16. Review the table in the Networking page to make sure that all vNICs were created.

17. Click Next.

18. Configure the SAN Connectivity: Select HANA-Nodes pool we created for World Wide Node Name.
19. Select ‘Use Connectivity Policy’ option for the "How would you like to configure SAN connectivity?" field.

20. Select HANA-SAN for SAN Connectivity Policy. Click Next.

22. vNIC/vHBA Placement:

 With the Cisco UCS B480 M5 populated with VIC 1340 + Port expander (treated as 1 adapter) and VIC 1380 as Adapter 3, they are recognized by UCS as Adapter1 and Adapter 3 respectively. The vCONs 1
and 2 are mapped to Adapter 1 and vCONs 3 and 4 are mapped to Adapter 3 for all the 4 slots available for Cisco UCS B480 M5 servers in the chassis.

Also, we used inks in Port-channel for chassis <-> F1 connectivity that does not warrant different placements for each slot as the traffic flow is handled in a Port-channel.

So we create a one service-profile template using vCONs 1 and 3 for the vNIC/vHBA assignment for use by servers in any slot of the chassis.

a. In the Select Placement list, choose the Specify Manually.

b. From the vHBAs tab, assign vhba-a to vCON1

c. From the vNICs tab, choose vCon1 and assign the vNICs to the virtual network interfaces policy in the following order:
 i. HANA-NFSshared
 ii. HANA-AppServer
 iii. HANA-Backup
 iv. HANA-Mgmt

Figure 131 Service Profile Template – vNIC/vHBA Placement – vHBA Assignment to vCON1

Create Service Profile Template

Specify how vNICs and vHBAs are placed on physical network adapters

Select Placement: Specify Manually Create Placement Policy

Specific Virtual Network Interfaces (click on a cell to edit)

<table>
<thead>
<tr>
<th>Name</th>
<th>Order</th>
<th>Admin H...</th>
<th>Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>vCon1</td>
<td></td>
<td></td>
<td>All</td>
</tr>
<tr>
<td>vhba-a</td>
<td>1</td>
<td>ANY</td>
<td>All</td>
</tr>
<tr>
<td>vCon2</td>
<td></td>
<td></td>
<td>All</td>
</tr>
<tr>
<td>vCon3</td>
<td></td>
<td></td>
<td>All</td>
</tr>
<tr>
<td>vCon4</td>
<td></td>
<td></td>
<td>All</td>
</tr>
</tbody>
</table>
d. Select vCON3. From the vHBAs tab, assign vHBA-b to vCON3.

e. Choose vCon2 and assign the vNICs to the virtual network interfaces policy in the following order:

i. HANA-Internal
ii. HANA-Client
iii. HANA-DataSource
iv. HANA-Replication
f. Review the table to verify that all vNICs are assigned to the policy in the appropriate order.

g. Click Next.

23. No Change required on the vMedia Policy, click Next.

24. Set the server boot order:

 a. Select HANA-sanboot for Boot Policy.

Figure 134 Service Profile Template – vNIC/vHBA Placement – vNIC Assignment to vCON2

<table>
<thead>
<tr>
<th>vNICs</th>
<th>vHBAs</th>
<th>Specify Manually</th>
<th>Create Placement Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No data available</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>> assign >></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><< remove <<</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Specific Virtual Network Interfaces (click on a cell to edit) |
|-----------------|-----------------|-----------------|------------------------|
| Name | Order | Admin | Select... |
| vCon 3 | | | |
| vHBA vhba-b | 1 | ANY | |
| vNIC HANA-Internal | 2 | ANY | |
| vNIC HANA-Client | 3 | ANY | |
| vNIC HANA-DataSource | 4 | ANY | |
| vNIC HANA-Replication | 5 | ANY | |

Figure 135 Service Profile Template – Server Boot Order

Create Service Profile Template

Select a boot policy:

- HANA-sanboot

WARNING:

The type (primary/secondary) does not indicate a boot order presence.

The effective order of boot devices within the same device class (LAN/Storage/SCSI) is determined by PCIe bus scan order.

If `Enforce vNIC/vHBA/SCSI` Name is selected and the vNIC/vHBA/SCSI does not exist, a config error will be reported.

- If it is not selected, the vNIC/vHBAs are selected if they exist, otherwise the vNIC/vHBA with the lowest PCIe bus scan order is used.

Table

<table>
<thead>
<tr>
<th>vNIC/vHBA Placement</th>
<th>CD/DVD</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAN Primary</td>
<td>1</td>
</tr>
<tr>
<td>vHBA Primary</td>
<td>2</td>
</tr>
<tr>
<td>SAN Target Primary</td>
<td>1</td>
</tr>
<tr>
<td>SAN Target Secondary</td>
<td>1</td>
</tr>
<tr>
<td>SAN Secondary</td>
<td>1</td>
</tr>
</tbody>
</table>
b. Click Next.

25. For Maintenance policy:

 a. Select the 'default' Maintenance Policy. Click Next.

```
Figure 136    Maintenance Policy

Create Service Profile Template

Specify how disruptive changes such as reboots, network interruptions, and firmware upgrades should be applied to the server associated with this service profile.

- Maintenance Policy

Select a maintenance policy to include with this service profile or create a new maintenance policy that will be accessible to all service profiles. Create Maintenance Policy

Name: default
Description: 
Soft Shutdown Timer: 160 Secs
Storage Config. Deployment Policy: User Ack
Reboot Policy: User Ack
```

26. Specify the server assignment:

 a. Select Down as the power state to be applied when the profile is associated with the server.
 b. Expand Firmware Management at the bottom of the page and select HANA-FW from the Host Firmware list. Click Next.
27. For Operational Policies:

 a. **BIOS Configuration** - In the BIOS Policy list, select HANA–BIOS.

 c. **Management IP Address** - In the Outband IPv4 tab choose ext-mgmt in the Management IP Address Policy.

 d. **Power Control Policy Configuration** - Select HANA in the Power Control Policy list.

 e. Leave the Scrub policy, KVM Management Policy and Graphics Card Policy with default selections.
28. Click Finish to create the service profile template.

29. Click OK in the confirmation message.

Create Service Profile from the Template

To create service profiles from the service profile template, complete the following steps:

1. In Cisco UCS Manager, click the Servers tab in the navigation pane.
2. Select Service Profile Templates > root > Sub-Organization > HANA > Service Template HANA-node.
3. Right-click Service Template HANA-node and select Create Service Profiles from Template
4. Enter HANA-Server0 as the service profile prefix.
5. Enter 1 as Name Suffix Starting Number.
6. Enter 4 as the Number of Instances since in this setup there are 4 nodes.
7. Click OK to create the service profile.
To associate service profile created for a specific server, complete the following steps:

1. In Cisco UCS Manager, click the Servers tab in the navigation pane.
2. Select Service Profile > root > Sub-Organization > HANA > HANA-Server01.
3. Right-click HANA-Server01 and select Change Service Profile Association.
4. For Server Assignment Choose Select existing Server for the drop-down.
5. Click Available Servers.
6. Select the server, as recommended. Click OK. Click Yes for the Warning. Click OK.
7. Assign HANA-node02, HANA-node03, and HANA-node04 to the servers.

Create and Configure Fiber Channel Zoning

To create the Fibre Channel connections between the Cisco MDS 9148S switches, the Cisco UCS Fabric Interconnects, and the Pure Storage FlashArray/X, complete the following steps:

1. Log in to the Cisco UCS Manager > Servers > Service Profiles > root > Sub-O rganizations > HANA > Service Profile HANA -> Server01. On the right hand pane, click the Storage tab and HBA’s sub tab to get the WWPN of HBA’s as shown in the figure below.
2. Note the WWPN of the all the configured Servers from their Service Profiles.

 In the current example configuration, the WWPN numbers of four server nodes configured are
 20:00:00:25:B5:0A:00:08 - 20:00:00:25:B5:0A:00:0B for the Fabric A and 20:00:00:25:B5:0B:00:08 -
 20:00:00:25:B5:0B:00:0B

3. Connect to the Pure Storage FlashArray//X and extract the WWPN of FC Ports connected to the Cisco MDS Switches. We have connected 8 FC ports from Pure Storage FlashArray//X to Cisco MDS Switches. FC ports
 CT0.FC0, CT1.FC0, CT0.FC2, CT1.FC2 are connected to MDS Switch-A and similarly FC ports CT0.FC1,
 CT1.FC1, CT0.FC3, CT1.FC3 are connected to MDS Switch-B.
Create Device Aliases for Fiber Channel Zoning

To configure device aliases and zones for the primary boot paths of MDS switch A, complete the following step:

1. Login as admin user and run the following commands.

```conf
t
device-alias database
device-alias name HANA-node01-hba-a pwwn 20:00:00:25:b5:0a:00:08
device-alias name HANA-node02-hba-a pwwn 20:00:00:25:b5:0a:00:09
device-alias name HANA-node03-hba-a pwwn 20:00:00:25:b5:0a:00:0a
device-alias name HANA-node04-hba-a pwwn 20:00:00:25:b5:0a:00:0b
device-alias name Pure-CT0-FC0 pwn 52:4a:93:75:69:b4:8c:00
device-alias name Pure-CT0-FC2 pwn 52:4a:93:75:69:b4:8c:02
device-alias name Pure-CT1-FC0 pwn 52:4a:93:75:69:b4:8c:10
```
To configure device aliases and zones for the primary boot paths of MDS switch B, complete the following step:

1. Login as admin user and run the following commands.

```sh
conf t
device-alias database
device-alias name HANA-node01-hba-b pwnn 20:00:00:25:b5:0B:00:08
device-alias name HANA-node02-hba-b pwnn 20:00:00:25:b5:0B:00:09
device-alias name HANA-node03-hba-b pwnn 20:00:00:25:b5:0B:00:0A
device-alias name HANA-node04-hba-b pwnn 20:00:00:25:b5:0B:00:0B
device-alias name Pure-CT0-FC1 pwnn 52:4A:93:75:69:B4:8C:01
device-alias name Pure-CT0-FC3 pwnn 52:4A:93:75:69:B4:8C:03
device-alias name Pure-CT1-FC1 pwnn 52:4A:93:75:69:B4:8C:11
exit
device-alias commit
```

Create Zoning

To configure zones for the MDS switch A, complete the following steps:

1. Create a zone for each service profile.

2. Login as admin user and run the following commands.

```sh
conf t
zone name HANA-node01-a vsan 10
    member device-alias Pure-CT0-FC0
    member device-alias Pure-CT1-FC0
    member device-alias Pure-CT0-FC2
    member device-alias Pure-CT1-FC2
    member device-alias HANA-node01-hba-a
exit
zone name HANA-node02-a vsan 10
    member device-alias Pure-CT0-FC0
    member device-alias Pure-CT1-FC0
    member device-alias Pure-CT0-FC2
    member device-alias Pure-CT1-FC2
    member device-alias HANA-node02-hba-a
exit
zone name HANA-node03-a vsan 10
    member device-alias Pure-CT0-FC0
    member device-alias Pure-CT1-FC0
    member device-alias Pure-CT0-FC2
    member device-alias Pure-CT1-FC2
    member device-alias HANA-node03-hba-a
exit
zone name HANA-node04-a vsan 10
    member device-alias Pure-CT0-FC0
    member device-alias Pure-CT1-FC0
    member device-alias Pure-CT0-FC2
    member device-alias Pure-CT1-FC2
    member device-alias HANA-node04-hba-a
```
3. After the zone for the Cisco UCS service profile has been created, create the zone set and add the necessary members.

```
zoneset name HANA-Nodes-A vsan 10
   member HANA-node01-a
   member HANA-node02-a
   member HANA-node03-a
   member HANA-node04-a
exit
```

4. Activate the zone set by running following commands.

```
zoneset activate name HANA-Nodes-A vsan 10
exit
```

To configure zones for the MDS switch B, complete the following steps:

1. Create a zone for each service profile.

2. Login as admin user and run the following commands.

```
conf t
zone name HANA-node01-b vsan 20
   member device-alias Pure-CT0-FC1
   member device-alias Pure-CT1-FC1
   member device-alias Pure-CT0-FC3
   member device-alias Pure-CT1-FC3
   member device-alias HANA-node01-hba-b
exit
zone name HANA-node02-b vsan 20
   member device-alias Pure-CT0-FC1
   member device-alias Pure-CT1-FC1
   member device-alias Pure-CT0-FC3
   member device-alias Pure-CT1-FC3
   member device-alias HANA-node02-hba-b
exit
zone name HANA-node03-b vsan 20
   member device-alias Pure-CT0-FC1
   member device-alias Pure-CT1-FC1
   member device-alias Pure-CT0-FC3
   member device-alias Pure-CT1-FC3
   member device-alias HANA-node03-hba-b
exit
zone name HANA-node04-b vsan 20
   member device-alias Pure-CT0-FC1
   member device-alias Pure-CT1-FC1
   member device-alias Pure-CT0-FC3
   member device-alias Pure-CT1-FC3
   member device-alias HANA-node04-hba-b
exit
```

3. After the zone for the Cisco UCS service profile has been created, create the zone set and add the necessary members.
4. Activate the zone set by running following commands.

```bash
zoneset name HANA-Nodes-B vsan 20
    member HANA-node01-b
    member HANA-node02-b
    member HANA-node03-b
    member HANA-node04-b
exit
```

```bash
zoneset activate name HANA-Nodes-B vsan 20
exit
copy run start
```
Configure Host

The first step is to represent the host at the array level. A host can be setup by completing the following steps in the Purity//FA GUI.

1. Log into Purity//FA dashboard: http://<<var_purecluster_ip>>
2. In the navigation pane, select Storage.
3. Under Hosts tab in the work pane, click the + sign and select Create Host.
4. Enter the name of the host and click Create. This should create a Host entry under the Hosts category.

5. To update the host with the connectivity information by providing the Fibre Channel WWNs, select the Host that was created. Click the Host Ports tab and click the settings button and select “Configure WWNs.”
6. Select the vhba-a and vhba-b pwwns from the listed WWNs for the host in question, by verifying this information from UCSM.

7. Click Add.
8. Follow steps 1-7 to configure the Hosts – HANA-node02, HANA-node03 and HANA-node04, mapping their respective vHBAs Port WWNs.
Configure Volume

To configure a volume, complete the following steps:

1. Go to the Storage tab on the navigation pane. Select the Volumes tab in the work pane and click the + sign to create volumes.

Figure 148 Create Boot Volume
2. Provide the name of the volume, size, choose the size type (KB, MB, GB, TB, PB) and click Create to create the volume.

Figure 149 Create Boot Volume (continued)

Create Volume

<table>
<thead>
<tr>
<th>Container</th>
<th>/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>HANA-node01-boot</td>
</tr>
<tr>
<td>Provisioned Size</td>
<td>100 G</td>
</tr>
<tr>
<td>Bandwidth Limit</td>
<td>Numbers ME/s</td>
</tr>
</tbody>
</table>

Create Multiple... Cancel Create

3. Click the created boot volume. Attach the volume to the respective host by going to the "Connected Hosts" tab under the volume context menu, click the Settings icon and select "Connect". Select the host to which the volume should be attached, specify the LUN number for Boot LUN as 1 and click Confirm.

Figure 150 Connect Hosts to Volume
This completes the connectivity of the volume to the server node. We have created one boot volume (HANA-node01-boot) of 100GB and assigned this volume to the first HANA node “HANA-node01”. Install the OS and perform all prerequisites to be able to install SAP HANA on this LUN.

When there is a reference configuration of the OS, complaint with SAP Note recommendations, you could create clones of this volume for use with other hosts in the cluster. For example, HANA-node02-boot, HANA-node03-boot and HANA-node04-boot for use with HANA-node02, HANA-node03 and HANA-node04.

To create a volume clone, complete the following steps:

1. Select the volume to be used as clone source under Storage> Volumes.

2. In the right pane, use the menu bar to on the right to select ‘Copy volume’ option. Provide a name in the Copy Volume pop-up and click Create.
3. The clone generated volume can now be associated with the host. In the Connect Hosts pane, select the volume by clicking the > and right-click the menu bar to select Connect Host.
4. In the left pane select the host to connect and select 1 for LUN ID and click Confirm.

5. Post OS installation and configuration of the HANA-node01 system, prepare clones of HANA-node01-boot volume as HANA-node02-boot, HANA-node03-boot, and HANA-node04-boot for use with hosts HANA-nodes02, HANA-node03 and HANA-node04.
Configure NFS share for /hana/shared

With Pure’s Purity//FA 4.10.9 or higher, it is possible to have VM instance of Windows Server 2016 running in each of the controllers which will then form a Windows Failover Cluster. File Servers will then be created within the cluster to serve NFS shares.

Each WFS VM is installed on its own separate boot volume. For Windows clustering purposes, a default quorum witness volume is exported to both WFS VMs. Lastly, a default data volume is also created where file services data will reside. Subsequent data volumes can be created if additional capacity is required. Data volumes are also exported to both WFS VMs to ensure persistent data across WFS VM failovers.

For more information about the best practices for WFS on Purity RUN refer to the Support page.

Requirements for the WFS configuration:

- The FlashArray must have two 10G iSCSI ports on each controller for cluster and file services client traffic
 - iSCSI ports eth4 and eth5 on controllers 0 and 1 are used for the same
- Domain Controller: Microsoft Failover Cluster requires a domain controller in the environment, therefore, a working domain controller must exist in order to run WFS.
 - In the validation environment a Windows Server VM configured a Domain Controller with DNS was leveraged.

- Domain Administrator Privileges: Customers must have appropriately elevated Domain Administrator privileges in order to perform many of the required setup steps like the following:
 - Configuring WFS VM IP addresses
 - Creating Microsoft Failover Clusters
 - Creating File Servers

⚠️ Pure Support takes care of these configuration steps.

- DNS Server: There must be a functional DNS server in the environment in order to run file services with WFS. The two WFS VMs, Failover Cluster, and File Servers will be given a default hostname as shown in Table A. Customers have the option of using the given default hostnames or to specify their own hostnames.

- IP Addresses: A minimum of six total IP addresses are required to run WFS. Table 17 lists the required IP addresses.

<table>
<thead>
<tr>
<th>Ethernet IP Address Requirement</th>
<th>Default DNS Hostname</th>
<th>Validation setup values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet port for WFS VM on CT0 - ct0.eth4</td>
<td>WFS-ct0</td>
<td>192.168.111.33</td>
</tr>
<tr>
<td>Ethernet port for WFS VM on CT1 - ct1.eth4</td>
<td>WFS-ct1</td>
<td>192.168.111.34</td>
</tr>
<tr>
<td>Ethernet port for WFS VM on CT0 - ct0.eth5</td>
<td>WFS-ct0</td>
<td>192.168.111.35</td>
</tr>
<tr>
<td>Ethernet port for WFS VM on CT1 - ct1.eth5</td>
<td>WFS-ct1</td>
<td>192.168.111.36</td>
</tr>
<tr>
<td>Failover Cluster</td>
<td>wfs-cluster</td>
<td></td>
</tr>
<tr>
<td>File Server</td>
<td>wfs-fs</td>
<td></td>
</tr>
</tbody>
</table>

With the above information, Pure Support team configures WFS and makes it available as host @WFS in the Purity//FA. They also create the required NFS fileserver role in the cluster.
Similar to adding volumes to any external hosts connected to a FlashArray, adding volumes to WFS is as simple as creating a new volume and connecting it to the WFS host, aptly named @WFS. Example configuration below shows 1TB hanafs-vol being added to the @WFS host.
The new volume should be visible immediately after a disk rescan within the WFS VMs. 1TB drive is visible as below:

In order for the new volume to be used by the cluster, complete the following steps:
1. Using Disk Management within a WFS VM, create an NTFS file system for the volume and ensure that both WFS VMs see the same drive letter. Form the validation setup, 1TB drive appears as Disk 3 in both VMs.

2. In the Failover Cluster Manager on either WFS VM, expand the cluster tree, highlight Disks, and select Add Disk under the Actions menu.

3. Select the newly created volume and click OK. The new volume should be added and appear on the list of Disks.
4. In the Failover Cluster Manager on either WFS VM, example the cluster tree, highlight Roles, and right-click on the desired File Server to which the volume will be added.

 Pure Support creates the hanafs NFS role.

5. Select Add Storage.
6. Select desired volume(s) and click OK.

7. Click OK. Confirm new volume has been added for the desired File Server.
Creating NFS Share

Creating NFS shares in WFS is simple and can be accomplished in several ways, including the Server Manager GUI or Windows PowerShell. To create a new NFS share creation using the Server Manager GUI, complete the following steps:

1. Navigate to Files and Storage Services and highlight Shares.

2. Click TASKS and select New Share...
3. Select **NFS Share - Quick** and click **Next**.

4. Select the desired File Server. If the desired share is to be from a new folder, choose option **a** below and select the desired volume for the new folder. If the folder to be shared already exists, select option **b** and browse for the existing folder.
5. Click Next.

6. Give the share a name and click Next.

7. Select the Authentication type for the client server. For simplicity, select **No server authentication (AUTH_SYS)**.
8. Select **Enable unmapped user access** and **Allow unmapped user access by UID/GID**.

You can choose Kerberos v5 authentication as long as it is configured appropriately in your environment.

9. Click **Next**.

10. Select the client hosts that are allowed to mount the NFS shares. You can select individual host names (or IP addresses), groups, or all host machines. For simplicity in this example, select **All Machines**.

11. Set the share permissions to **Read/Write**.
12. Click **Add**.

13. Confirm the selected hosts, groups, or all machines appear. Click **Next**.
14. In the next Permissions window, click **Customized permissions...**
15. Click Add.

16. Click Select a Principal.

17. In the empty box, type `Everyone` and click Check Names. "Everyone" should be recognized by Windows Server. Click OK.
18. Click **OK** again.
19. Confirm Everyone was added to the Permissions entries. Click OK.
20. Click **Next**.

21. Confirm the selections and click **Create**, then click **Close**.

Properties and settings for this share may be edited after the share creation.
The new share should now appear in the Shares field of Server Manager.

This NFS share will be used for the /hana/shared filesystem during the scale-out system preparation of HANA.
Reference Workloads and Use Cases

In this CVD, two use cases are defined to illustrate the principles and the required steps to configure the FlashStack for SAP HANA in TDI mode. Firstly, we define the Operating System base configuration compliant with SAP recommendations for HANA install.

SAP HANA Node OS Preparation – SLES for SAP SP3

In this section the SLES for SAP 12 SP3 installation and configuration is detailed.

OS Installation

To install the OS, complete the following steps:

1. On the UCSM page, Servers -> Service Profiles -> root -> Sub-O rganizations -> HANA – Right-click HANA-node01 and select KVM console.

2. After the KVM console is launched, click Boot Server.

3. Choose Virtual Media > Activate Virtual Devices.
 a. For Unencrypted Virtual Media Session, select Accept this Session and then click Apply.
 b. Click Virtual Media and choose Map CD/DVD.
 c. Click Browse to navigate to the ISO media location. Select SLE-12-SP3-Sap-DVD-x86_64-GM-DVD1.iso. Click Open.
 d. Click Map Device.

4. At server boot time, during verification of VIC FC boot driver version, it recognizes the Pure Storage FlashArray //X by its target WWPN numbers. This verifies the server to storage connectivity.

Press <Ctrl><R> to Enable BIOS

Cisco VIC FC, Boot Driver Version 4.2(3b)
(C) 2016 Cisco Systems, Inc.
PURE 524a937569b48c00:001
PURE 524a937569b48c10:001
Option ROM installed successfully

Cisco VIC FC, Boot Driver Version 4.2(3b)
(C) 2016 Cisco Systems, Inc.
PURE 524a937569b48c11:001
PURE 524a937569b48c01:001
Option ROM installed successfully
5. The System will automatically boot from the ISO image. Select the Installation option.

6. On the first “Language, Keyboard and License Agreement” page, select the Language of choice and Keyboard Layout, “I Agree to license terms” and click Next.

7. **Network Settings** – Select Next. We will re-visit the network configuration as part of post-installation tasks.
8. **System Probing** – Select 'No' for the pop-up related to activation of multipath.
9. **Registration** – Select Skip Registration. We will do this later as part of post-installation tasks. Click ‘Yes’ for the confirmation warning pop-up to proceed.

10. **Product Installation Mode** – Select “Proceed with standard SLES for SAP Applications installation” option.
11. **Add On Product**: Click Next. We don’t have any additional Add On Production to install.

12. Select ‘Expert Partitioner’ > on the left ‘System View’ > Linux > Hard Disks > Select a device from the list which is 100G. In the navigation pane click ‘Delete’ if found with the suggested partitions which results in an Unpartitioned disk of 100GB.
13. On the right pane, under Partitions tab, select device, add a new Partition by selecting ‘Add’ under the Partitions tab for the device. Select Primary Partition for New Partition Type in the next step.
14. Select Maximum Size. Click Next.
15. Click Next.
16. Select Operating System Role and click Next.
17. Select ext3 File system and / or mount point. Click Finish.

18. Click Accept to come back to the Installation Settings page.
19. Click Yes to continue setup without swap partition. Click Accept.

20. Click Next on the final Suggested Partition page.
21. Clock and Time Zone – choose the appropriate time zone and select Hardware clock set to UTC.

22. Password for the System Administrator “root” – Key in appropriate password <<var_sys_root-pw>>
23. Customize the software selection. Click Software headline to make the following changes:

a. Deselect GNOME DE and X Window System
b. Make sure C/C++ Compiler and Tools is selected.
c. Select SAP HANA Server Base.
d. Deselect SAP Application Server Base.
24. Click OK.

25. Under ‘Firewall and SSH’ headline: Click ‘disable’ for Firewall. This will automatically enable SSH service.

26. Leave the default selections unchanged.
27. Click Install and select Install again for the subsequent ‘Confirm Installation’ prompt. The installation is started and you can monitor the status.
28. The system will reboot and “Boot from disk” on start-up presenting the login prompt.
Post Installation Steps

As part of the post-install configuration, you will define the hostname, network configuration, kernel/packages update, and tuning as per the SAP Notes recommendations.

1. Configure the hostname and disable IPV6.

 #yast2.

 a. System > Network Settings and select Run > Alt+s to select Hostname/DNS tab.

 b. Input the <<var_hostname.domain>>. Also key in DNS server address of your network for resolution, if any. and select Alt+o.

 c. On the Global Options tab with Alt+g, you can choose to disable IPV6, by unselecting the Enable IPV6 option as shown in the figure below. Changing the IPV6 setting requires a reboot to effect the changes.
d. Select Alt+o to save the Network Configuration. Select Alt+q to quit the YaST Control center.

e. Perform a reboot to effect the IPV6 selection and also the hostname settings.

```
#reboot
```

2. Host networking configuration. The vNIC to MAC address mapping information for a host can be obtained from the network tab of that host’s Service Profile.

3. At the host OS level, the Ethernet interface to MAC address mapping can be ascertained with the ‘ifconfig’ command.
4. Co-relationg the outputs in step a and b above, we are able to determine the right IP address/network that need to be assigned to the Ethernet interface. For the same IP addressing scheme cheat sheet, as below, can be quite handy.

5. Assign the IP address and subnet mask for the ethernet interfaces based on the all the information we have so far.

```
# cd /etc/sysconfig/network

# vi ifcfg-eth0
BOOTPROTO='static'
BROADCAST='
ETHTOOL_OPTIONS='
IPADDR='192.168.111.200/24'
MTU='
NAME='VIC Ethernet NIC'
NETWORK='
REMOTE_IPADDR='
STARTMODE='auto'

# vi ifcfg-eth1
BOOTPROTO='static'
BROADCAST='
ETHTOOL_OPTIONS='
IPADDR='192.168.220.200/24'
MTU='9216'
NAME='VIC Ethernet NIC'
NETWORK='
REMOTE_IPADDR='
STARTMODE='auto'

# vi ifcfg-eth2
BOOTPROTO='static'
```
BROADCAST=''
ETHTOOL_OPTIONS=''
IPADDR='192.168.221.200/24'
MTU=''
NAME='VIC Ethernet NIC'
NETWORK=''
REMOTE_IPADDR=''
STARTMODE='auto'

#vi ifcfg-eth3
BOOTPROTO='static'
BROADCAST=''
ETHTOOL_OPTIONS=''
IPADDR='192.168.76.200/24'
MTU=''
NAME='VIC Ethernet NIC'
NETWORK=''
REMOTE_IPADDR=''
STARTMODE='auto'

#vi ifcfg-eth4
BOOTPROTO='static'
BROADCAST=''
ETHTOOL_OPTIONS=''
IPADDR='192.168.223.200/24'
MTU=''
NAME='VIC Ethernet NIC'
NETWORK=''
REMOTE_IPADDR=''
STARTMODE='auto'

#vi ifcfg-eth5
BOOTPROTO='static'
BROADCAST=''
ETHTOOL_OPTIONS=''
IPADDR='192.168.222.200/24'
MTU=''
NAME='VIC Ethernet NIC'
NETWORK=''
REMOTE_IPADDR=''
STARTMODE='auto'

#vi ifcfg-eth6
BOOTPROTO='static'
BROADCAST=''
ETHTOOL_OPTIONS=''
IPADDR='192.168.224.200/24'
MTU=''
NAME='VIC Ethernet NIC'
NETWORK=''
REMOTE_IPADDR=''
STARTMODE='auto'

#vi ifcfg-eth7
BOOTPROTO='static'
BROADCAST=''
ETHTOOL_OPTIONS=''
6. Add the default gateway.

 # cd /etc/sysconfig/network
 # vi routes
 default <<var_mgmt_gateway_ip>> - -

 Be sure that the system has access to the Internet or a SUSE update server to install the patches.

7. Update the /etc/hosts with IP address of all networks and their alias hostnames:

 cishana01m:~ # vi /etc/hosts

 # hosts This file describes a number of hostname-to-address
 # mappings for the TCP/IP subsystem. It is mostly
 # used at boot time, when no name servers are running.
 # On small systems, this file can be used instead of a
 # "named" name server.
 # Syntax:
 #
 # IP-Address Full-Qualified-Hostname Short-Hostname
 #
 127.0.0.1 localhost

 # special IPv6 addresses
 ::1 localhost ipv6-localhost ipv6-loopback
 fe00::0 ipv6-localnet
 ff00::0 ipv6-mcastprefix
 ff02::1 ipv6-allnodes
 ff02::2 ipv6-allrouters
 ff02::3 ipv6-allhosts

 #
 ## Internal Network
 #
 192.168.220.200 cishana01.ciscolab.local cishana01

 ## NFS /hana/shared Network
 #
 192.168.111.200 cishana01s.ciscolab.local cishana01s

 ## Client Network
 #
 192.168.222.200 cishana01c.ciscolab.local cishana01c

 ## AppServer Network
 #
 192.168.223.200 cishana01a.ciscolab.local cishana01a
Admin Network
#
192.168.76.200 cishana01m.ciscolab.local cishana01m
#
Backup Network
#
192.168.221.200 cishana01b.ciscolab.local cishana01b
#
DataSource Network
#
192.168.224.200 cishana01d.ciscolab.local cishana01d
#
Replication Network
#
192.168.225.200 cishana01r.ciscolab.local cishana01r
#

8. Create SWAP partition.

```bash
#dd if=/dev/zero of=/swap_01 bs=1024 count=2097152
#mkswap /swap_01
#chown root:disk /swap_01
#chmod 600 /swap_01
#swapon /swap_01
```

9. Update the /etc/fstab with swap filesystem information by appending this line.

```
/swap_01  swap  swap  defaults  0  0
```

10. Set up a proxy service, so that the appliance can reach the Internet.

 YaST2 – Key in the proxy server and port details. Select OK and then quit YaST to save the configuration.
11. Select “Enable Proxy” > key in the <<proxy server IP address:port>> information and select “use same proxy for all Protocols” option.
12. Test the Proxy Settings to make they are working.
13. Register the system with SUSE to get the latest patches. For more information refer SUSE KB article https://www.suse.com/de-de/support/kb/doc?id=7016626

14. The system must have access to the Internet to proceed with this step.

```
#SUSEConnect -r <<registration_code>>
```

15. Update the system with the following command. Again, the system must have access to the Internet to proceed with this step.

```
zypper update
```

16. Follow the on-screen instructions to complete the update process. Reboot the server and log in to the system again.

17. Update fnic and enic drivers:

 a. Based on the server type/model, processor version, OS release and version information download the Firmware bundle corresponding to the UCS Server firmware installed from the Cisco UCS Hardware and Software Compatibility site

 b. Extract the rpm files of the fnic and enic drivers from the bundle over to the node.

```
rishana0lm:/opt # rpm -Vh cisco-enic-vmnic-kmp-default-3.0.45.564.551.3_k4.4.73_5-1.x86_64.rpm
Preparing...                                      [100]
Updating / installing...
1: cisco-enic-vmnic-kmp-default-3.0.45.564.551.3_k4.4.73_5-1.x86_64
```

```
rishana0lm:/opt # rpm -Vh cisco-fnic-kmp-default-1.6.0.37_k9.4.73_5-1.x86_64.rpm
Preparing...                                      [100]
Updating / installing...
1: cisco-fnic-kmp-default-1.6.0.37_k9.4.73_5-1.x86_64
```

```
rishana0lm:/opt # rpm -Vh cisco-fnic-vmnic-kmp-default-3.0.45.564.551.3_k4.4.73_5-1.x86_64
Preparing...                                      [100]
Updating / installing...
1: cisco-fnic-vmnic-kmp-default-3.0.45.564.551.3_k4.4.73_5-1.x86_64
```

```
rishana0lm:/opt # cishana01m:~ # rpm -V fh <fnic.rpm>
```

239
cishana01m:~ # rpm -Uvh <enic.rpm>

18. Configuration of udev rules:

The device manager of the kernel needs to be configured as shown below. The most important parameters to change are nr_requests and scheduler. Please set the parameters has for Pure Storage FlashArray//X in the /etc/udev/rules.d directory, as shown below:

```bash
#cd /etc/udev/rules.d
#vi 99-pure-storage.rules

# Recommended settings for Pure Storage FlashArray.
# Use noop scheduler for high-performance solid-state storage
ACTION=="add|change", KERNEL=="sd*[!0-9]", SUBSYSTEM=="block",
ENV{ID_VENDOR}=="PURE", ATTR{queue/scheduler}="noop"
# Reduce CPU overhead due to entropy collection
ACTION=="add|change", KERNEL=="sd*[!0-9]", SUBSYSTEM=="block",
ENV{ID_VENDOR}=="PURE", ATTR{queue/nr_requests}=1024
ACTION=="add|change", KERNEL=="sd*[!0-9]", SUBSYSTEM=="block",
ENV{ID_VENDOR}=="PURE", ATTR{queue/add_random}=0

ACTION=="add|change", KERNEL=="sd*[!0-9]", SUBSYSTEM=="block",
ATTR{queue/nr_requests}=1024
ACTION=="add|change", KERNEL=="sd*[!0-9]", SUBSYSTEM=="block",
ATTR{queue/nomerges}=1
ACTION=="add|change", KERNEL=="sd*[!0-9]", SUBSYSTEM=="block",
ATTR{queue/rotational}=0

# Spread CPU load by redirecting completions to originating CPU
ACTION=="add|change", KERNEL=="sd*[!0-9]", SUBSYSTEM=="block",
ENV{ID_VENDOR}=="PURE", ATTR{queue/rotation}="0"
ACTION=="add|change", KERNEL=="sd*[!0-9]", SUBSYSTEM=="block",
ENV{ID_VENDOR}=="PURE", ATTR{queue/rq_affinity}="2"
ACTION=="add|change", KERNEL=="sd*[!0-9]", SUBSYSTEM=="block",
ENV{ID_VENDOR}=="PURE", ATTR{queue/nr_requests}=4096
ACTION=="add|change", KERNEL=="sd*[!0-9]", SUBSYSTEM=="block",
ENV{ID_VENDOR}=="PURE", ATTR{queue/add_random}=0

# SCSI timeout in line with Customer Best Practices
ACTION=="add", SUBSYSTEM=="scsi",
RUN+="/bin/sh -c 'echo 60 > /sys$DEVPATH/timeout'"
```

19. Multipath configuration:

Multipathing needs to be setup to do round-robin for all PURE LUNs by setting it up in /etc/multipath.conf. The file contents of multipath.conf are shown here:

```bash
# vi /etc/multipath.conf

devices {
    device {
```
SAP Notes Recommended Implementation

To optimize the use of HANA DB with SLES for SAP 12 SP3 apply the following settings as per the SAP Note 2205917:

1. Linux kernel update: Please upgrade the Linux kernel to version 4.4.120-94.17.1 or newer.

   ```
cishana01m:~ # uname -r
4.4.162-94.72-default
   ```

2. Configure sapcong, saptune as in SAP Note 1275776

   ```
cishana01m:~ # zypper install sapconf
Refreshing service "SUSE_Linux_Enterprise_Server_for_SAP_Applications_12_SP4_x86_64".
Loading repository data... done.
Reading installed packages... done.
Resolving package dependencies...
The following 2 NEW packages are going to be installed:
  sapconf uuid
1 new package to install,
Overall download size: 145.9 KiB. Already cached: 0 B. After the operation, additional 110.9 KiB will be used.
Continue? [y/N]... shows all options] (y): y
Retrieving package uuids-2.29.2-3.8.1.x86_64
Retrieving package sapconf-4.1.13-40.53.1.noarch
Retrieving package saptune-4.1.13-40.53.1.noarch.tar.gz
Checking for file conflicts: ..................................................
(1/2) Installing uuids-2.29.2-3.8.1.x86_64
Additional rpm output:
Created symbolic link /etc/systemd/system/sapconf.timer.wants/uuid.socket to /usr/lib/systemd/system/uuid.socket.

(1/2) Installing: sapconf-4.1.13-40.53.1.noarch
Additional rpm output:
Updating /etc/sapconf/.sapconf-16093003
Updating /etc/sysconfig/sapconf ...
Created symbolic link /etc/systemd/system/sapconf.service
for the maximum number of OS tasks each user may run concurrently (UserTaskMax).
With this setting your system is vulnerable to root now attacks.
Please rebooch the system for the UserTaskMax change to become effective
   ```
   ```
cishana01m:~ # sapconf
Usage: /usr/sbin/sapconf {start|reload|hansa|stop|starts|stop|status}
cishana01m:~ # sapconf hans
Forced action to tunes-adm.
cishana01m:~ # sapconf hans
```
3. Turn off autoNUMA, disable transparent HugePages, and configure C-states for lower latency:

4. Use YaST2 bootloader, execute:

```bash
# yast2 bootloader
```

 a. Choose "Kernel Parameters" tab (ALT-k) and edit the "Optional Kernel Command Line Parameter" section by appending:

   ```
   numa_balancing=disable transparent_hugepage=never intel_idle.max_cstate=1
   processor.max_cstate=1
   ```

 b. Press Alt+o to save and exit the yast2.

Figure 181 YaST – Kernel Command Line Parameters Configuration

5. CPU frequency/voltage scaling and Energy Performance Bias (EPB) settings:

6. Append "cpupower frequency-set -g performance" to /etc/init.d/boot.local to set it at system startup.

7. Append "cpupower set -b 0" to the /etc/init.d/boot.local file to set EPB at boot time:
OS Installation

To install the OS, complete the following steps:

The following procedure shows the RHEL 7.4 installation procedure. Keep the RHEL DVD handy.

This section provides the procedure for RedHat Enterprise Linux 7.4 Operating System and customizing for SAP HANA requirement.

To install the RHEL 7.4 system, complete the following steps:

1. In Cisco UCS Manager, click the Servers tab in the navigation pane.

2. Choose Service Profile > root > Sub-Organization > HANA > HANA-node02.

3. Click KVM Console.

4. When the KVM Console is launched, click Boot Server.

5. Click Virtual Media > Activate Virtual Devices:
 a. Choose the option Accept this Session for Unencrypted Virtual Media Session and then click Apply.
 b. Click Virtual Media and Choose Map CD/DVD.

8. Reboot the server.

 #reboot
c. Click Browse to navigate ISO media location.

d. Click Map Device.

6. At server boot time, during verification of VIC FC boot driver version, it recognizes the Pure Storage FlashArray//X by its target WWPN numbers. This verifies the server to storage connectivity.

7. On the Initial screen choose Install to begin the installation process.
8. Choose Language and click Continue.

9. The central Installation Summary page displays. Click Date & Time; choose the appropriate timezone and click Done.
10. Click Keyboard; choose Keyboard layout and click Done.

12. In the Base Environment choose Infrastructure Server.

13. For Add-Ons for Selected Environment choose Large Systems Performance, Network File System Client, Performance Tools, Compatibility Libraries and click Done.

15. Under Multipath Devices, select the lone 100G device identifies by its WWID. Click Done.

16. From the Other Storage Options choose ‘I will configure partitioning’ and click Done.
17. In the Manual Partitioning Screen, choose Standard Partition for New mount points will use the following partitioning scheme.
18. Click the + symbol to add a new partition.

19. Choose the mount point as `/boot`.

20. Enter the Desired capacity as 1024 MiB and click Add Mount Point.
21. Choose the filesystem ext3.

22. Click the + symbol to add a new partition.

23. Choose the mount point swap.

24. Enter the Desired capacity 2048 MiB and click Add Mount Point.

25. Choose the filesystem swap.

26. Click the + symbol to add / (root) partition.

27. Choose the mount point as /.

28. Enter the Desired capacity 97GiB and click Add Mount Point.

29. Choose the filesystem ext3.
30. Click Done on the top left corner of the screen.

31. Review the partition layout and the size.

32. Click Accept Changes to proceed to the next steps.

33. Click KDUMP.
34. Deselect Enable kdump.

35. Click Security policy, choose Apply Security policy to OFF and click Done.

36. Click Done on the top left corner of the screen.

37. Click Network & Hostname.

38. Enter the Host name and click Apply.

39. IP address will be assigned once the OS is installed. Click Done.

40. Click Done at the top left corner of the screen.
41. Review the installation summary and click Begin Installation.

The next screen shows the start of the OS installation.

42. Click Root Password.
43. Enter the Root Password and Confirm.

44. Click Done on the top left corner of the window.

45. The installation will start and continue.

46. When the installation is complete click Reboot to finish the installation.

Post Installation steps

In RHEL 7, systemd and udev support a number of different naming schemes. By default, fixed names are assigned based on firmware, topology, and location information, like 'enp72s0'. With this naming convention, though names stay fixed even if hardware is added or removed it is often harder to read unlike traditional kernel-native ethX naming "eth0." Another way to name network interfaces, "biosdevnames", is already available with installation.

1. Configure boot parameters "net.ifnames=0 biosdevname=0" to disable both, to get the original kernel native network names.

2. IPV6 support could be disabled at this time as we use IPV4 in the solution. This can be done by appending `ipv6.disable=1` to GRUB_CMDLINE_LINUX as shown below:
3. To Run the grub2-mkconfig command to regenerate the grub.cfg file:

```bash
grub2-mkconfig -o /boot/grub2/grub.cfg
```

4. Finally reboot system to effect the changes.

To configure the network interface on the OS, it is required to identify the mapping of the ethernet device on the OS to vNIC interface on the Cisco UCS.

5. From the OS, execute the following command to get list of Ethernet device with MAC Address:

```bash
[root@cishanasol1 ~]# ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN qlen 1
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9000 qdisc mq state UP qlen 1000
    link/ether 00:25:b5:00:00:1e brd ff:ff:ff:ff:ff:ff
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9000 qdisc mq state UP qlen 1000
    link/ether 00:25:b5:00:00:1f brd ff:ff:ff:ff:ff:ff
4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9000 qdisc mq state UP qlen 1000
    link/ether 00:25:b5:00:00:20 brd ff:ff:ff:ff:ff:ff
5: eth3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9000 qdisc mq state UP qlen 1000
    link/ether 00:25:b5:00:00:21 brd ff:ff:ff:ff:ff:ff
6: eth4: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9000 qdisc mq state UP qlen 1000
    link/ether 00:25:b5:00:00:2e brd ff:ff:ff:ff:ff:ff
7: eth5: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9000 qdisc mq state UP qlen 1000
    link/ether 00:25:b5:00:00:2f brd ff:ff:ff:ff:ff:ff
8: eth6: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9000 qdisc mq state UP qlen 1000
    link/ether 00:25:b5:00:00:30 brd ff:ff:ff:ff:ff:ff
9: eth7: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9000 qdisc mq state UP qlen 1000
    link/ether 00:25:b5:00:00:31 brd ff:ff:ff:ff:ff:ff
```

6. In Cisco UCS Manager, click the Servers tab in the navigation pane. Expand Servers > Service Profile > root > Sub-Organization > HANA > HANA-node02. Click + to Expand. Click vNICs. On the right pane list of the vNICs with MAC Address are listed.
Notice the MAC Address of the HANA-Internal vNIC is “00:25:B5:00:0B:21”. By comparing MAC Address on the OS and Cisco UCS, we can derive that eth3 on OS will carry the VLAN for HANA-Mgmt. A VLAN-ethernet-IPaddress mapping cheat sheet as below would help.

<table>
<thead>
<tr>
<th>Host/Network</th>
<th>Inter-node</th>
<th>NFS=shared</th>
<th>Client Access</th>
<th>App Server</th>
<th>Admin</th>
<th>Backup</th>
<th>Data Source</th>
<th>Replicas</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN</td>
<td>220</td>
<td>111</td>
<td>222</td>
<td>223</td>
<td>221</td>
<td>224</td>
<td>225</td>
<td></td>
</tr>
<tr>
<td>Variable Info</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7. Go to network configuration directory and create a configuration for eth0:

```bash
cd /etc/sysconfig/network-scripts/
vi ifcfg-eth0
DEVICE=eth0
TYPE=Ethernet
ONBOOT=yes
BOOTPROTO=static
IPV6INIT=no
USERCTL=no
NM_CONTROLLED=no
IPADDR=<IP address for HANA-Mgmt network example:192.168.76.201>
NETMASK=<subnet mask for HANA-Mgmt192.168 network 255.255.255.0>
```

8. Derive and assign IP addresses for the rest of the interfaces.

9. Add default gateway:

```bash
vi /etc/sysconfig/network
NETWORKING=yes
HOSTNAME=<HOSTNAME.DOMAIN>
GATEWAY=<IP Address of default gateway>
```

10. Restart network to effect the IP address and gateway assignment.

```bash
systemctl restart network
```
11. Domain Name Service configuration must be done based on the local requirements.

12. Add DNS IP if it is required to access internet:

```bash
vi /etc/resolv.conf
DNS1=<<IP of DNS Server1>>
DNS2=<<IP of DNS Server2>>
DOMAIN= <<Domain_name>>
```

13. Update fnic and enic drivers:

Based on the server type/model, processor version, OS release and version information download the Firmware bundle corresponding to the UCS Server firmware installed from the Cisco UCS Hardware and Software Compatibility site.

Extract the rpm files of the fnic and enic drivers from the bundle over to the node.

```
cishana02m:~ # rpm -Uvh <fnic.rpm>
cishana02m:~ # rpm -Uvh <enic.rpm>
```

14. Configure the udev rules:

The device manager of the kernel needs to be configured as shown below. Most important parameters to be changed are nr_requests and scheduler. Please set parameters has shown below for Pure Storage in the /etc/udev/rules.d directory as shown below:

```bash
#cd /etc/udev/rules.d
#vi 99-pure-storage.rules

# Recommended settings for Pure Storage FlashArray.
# Use noop scheduler for high-performance solid-state storage
ACTION="add|change", KERNEL="sd[!0-9]", SUBSYSTEM="block",
ENV{ID_VENDOR}="PURE", ATTR{queue/scheduler}="noop"
# Reduce CPU overhead due to entropy collection
ACTION="add|change", KERNEL="sd[!0-9]", SUBSYSTEM="block",
ENV{ID_VENDOR}="PURE", ATTR{queue/add_random}="0"
# Spread CPU load by redirecting completions to originating CPU
ACTION="add|change", KERNEL="sd[!0-9]", SUBSYSTEM="block",
ENV{ID_VENDOR}="PURE", ATTR{queue/rq_affinity}="2"
ACTION="add|change", KERNEL="sd[!0-9]", SUBSYSTEM="block",
ENV{ID_VENDOR}="PURE", ATTR{queue/nr_requests}="1024"
ACTION="add|change", KERNEL="sd[!0-9]", SUBSYSTEM="block",
ENV{ID_VENDOR}="PURE", ATTR{queue/nomerges}="1"
ACTION="add|change", KERNEL="sd[!0-9]", SUBSYSTEM="block",
ENV{ID_VENDOR}="PURE", ATTR{queue/rotational}="0"
ACTION="add|change", ENV{DM_UUID}="mpath-3624a937?*",
ATTR{queue/scheduler}="noop"
ACTION="add|change", ENV{DM_UUID}="mpath-3624a937?*",
ATTR{queue/rotational}="0"
ACTION="add|change", ENV{DM_UUID}="mpath-3624a937?*",
ATTR{queue/nr_requests}="4096"
ACTION="add|change", ENV{DM_UUID}="mpath-3624a937?*",
ATTR{queue/rq_affinity}="2"
ACTION="add|change", ENV{DM_UUID}="mpath-3624a937?*",
ATTR{queue/nomerges}="1"
```
Reference Workloads and Use Cases

15. Multipath configuration:

Multipathing needs to be setup to do round-robin for all PURE LUNs by setting it up in /etc/multipath.conf. The file contents of multipath.conf are shown here:

```
# vi /etc/multipath.conf
devices {
  device {
    vendor                  "PURE"
    path_selector           "round-robin 0"
    path_grouping_policy    multibus
    path_checker            tur
    fast_io_fail_tmo        10
    dev_loss_tmo            60
    no_path_retry           0
  }
}
```

16. Update the RedHat system:

To update and customize RHEL system, have the proxy server and port information updated in /etc/rhsm/rhsm.conf file to enable it to access internet.

In order to patch the system, the repository must be updated. Note that the installed system does not include any update information. In order to patch the RedHat System, it must be registered and attached to a valid Subscription. The following line will register the installation and update the repository information.

```
subscription-manager register --auto-attach
Username: <<username>>
Password: <<password>>
```

17. Update only the OS kernel and firmware packages to the latest release that appeared in RHEL 7.4. Set the release version to 7.4:

```
subscription-manager release --set=7.4
```

18. Add the repos required for SAP HANA:

```
subscription-manager repos --disable "*"
```
19. Apply the latest updates for RHEL 7.4 Typically, the kernel is updated as well:

```
yum -y update
yum -y groupinstall base
```

20. Install dependencies in accordance with the SAP HANA Server Installation and Update Guide. Install the numactl package if the benchmark HWCT is to be used:

```
yum -y install gtk2 libicu xulrunner sudo tcsh libssh2 expect cairo graphviz iptraf-ng krb5-workstation libpvl2 krb5-libs nfs-utils lm_leners rsyslog compat-sap-c++ openssl openssl PackageKit-gtk3-module libcancerra-gtk2 libtool-ltdl xorg-x11-xauth compat-libstdc++-numactl libuuid uuidd e2fsprogs icedtea-web xfsprogs net-tools bind-utils glibc-devel libgomp chrony ntp ntpdate
```

21. Disable SELinux:

```
sed -i 's/^SELINUX=enforcing/SELINUX=disabled/g' /etc/sysconfig/selinux
sed -i 's/^SELINUX=permissive/SELINUX=disabled/g' /etc/sysconfig/selinux
sed -i 's/^SELINUX=enforcing/SELINUX=disabled/g' /etc/selinux/config
sed -i 's/^SELINUX=permissive/SELINUX=disabled/g' /etc/selinux/config
```

22. Sysctl.conf: The following parameters must be set in /etc/sysctl.conf:

```
net.ipv4.tcp_slow_start_after_idle = 0
net.ipv4.conf.all.rp_filter = 0
net.ipv4.ip_local_port_range = 40000 61000
net.ipv4.neigh.default.gc_thresh1 = 256
net.ipv4.neigh.default.gc_thresh2 = 1024
net.ipv4.neigh.default.gc_thresh3 = 4096
net.ipv6.neigh.default.gc_thresh1 = 256
net.ipv6.neigh.default.gc_thresh2 = 1024
net.ipv6.neigh.default.gc_thresh3 = 4096
net.core.rmem_max = 16777216
net.core.wmem_max = 16777216
net.core.rmem_default = 262144
net.core.wmem_default = 262144
net.core.optmem_max = 16777216
net.core.netdev_max_backlog = 300000
net.ipv4.tcp_rmem = 65536 262144 16777216
net.ipv4.tcp_wmem = 65536 262144 16777216
net.ipv4.tcp_no_metrics_save = 1
net.ipv4.tcp_moderate_rcvbuf = 1
net.ipv4.tcp_window_scaling = 1
net.ipv4.tcp_timestamps = 1
net.ipv4.tcp_sack = 1
sunrpc.tcp_max_slot_table_entries = 128
```

23. Add the following line into /etc/modprobe.d/sunrpc-local.conf. Create the file, if it does not exist:

```
sunrpc.tcp_max_slot_table_entries = 128
```

24. For compatibility reasons, four symbolic links are required:
SAP Notes Recommendation Implementation

To optimize the use of HANA DB RHEL 7.4 apply the following settings as per SAP Note 2292690:

1. Make sure the Kernel version is `kernel-3.10.0-693.11.6` or newer and tuned profile is tuned-profiles-sap-hana-2.8.0-5.el7_4.2 or newer

```bash
# rpm -qa | grep kernel
# rpm -qa | grep tuned
```

2. Configure tuned to use profile "sap-hana". The tuned profile "sap-hana", which is provided by Red Hat as part of RHEL 7 for SAP HANA, contains many of the configures some additional settings. Therefore the "sap-hana" tuned profile must be activated on all systems running SAP HANA:

```bash
# yum install tuned-profiles-sap-hana
# systemctl start tuned
# systemctl enable tuned
# tuned-adm profile sap-hana
```

3. Turn off auto-numa balancing: SAP HANA is a NUMA (non-uniform memory access) aware database. Thus it does not rely on the Linux kernel’s features to optimize NUMA usage automatically. Depending on the workload, it can be beneficial to turn off automatic NUMA balancing. For this purpose, add "kernel.numa_balancing = 0" to `/etc/sysctl.d/sap_hana.conf` (please create this file if it does not already exist) and reconfigure the kernel by running:

```bash
#echo "kernel.numa_balancing = 0" >> /etc/sysctl.d/sap_hana.conf
#sysctl -p /etc/sysctl.d/sap_hana.conf
```

4. Disable transparent hugepages and configure C-states for lower latency.

5. Modify the file `/etc/default/grub` and append the following parameters to the line starting with `GRUB_CMDLINE_LINUX`:

```bash
transparent_hugepage=never  intel_idle.max_cstate=1  processor.max_cstate=1
```

6. To implement these changes, rebuild the GRUB2 configuration:

```bash
grub2-mkconfig -o /boot/grub2/grub.cfg
```

7. The "numad" daemon must be disable:

```bash
#systemctl stop numad
#systemctl disable numad
```

8. Disable ABRT, Crash Dump:

```bash
# systemctl disable abrtd
# systemctl disable abrt-ccpp
```
systemctl stop abrtd
systemctl stop abrt-ccpp

9. Disable core file creation. To disable core dumps for all users, open /etc/security/limits.conf, and add the line:

```
* soft core 0
* hard core 0
```

10. Enable group "sapsys" to create an unlimited number of processes:

```
echo "@sapsys soft nproc unlimited" > /etc/security/limits.d/99-sapsys.conf
```

11. Disable Firewall:

```
# systemctl stop firewalld
# systemctl disable firewalld
```

12. Reboot the OS by issuing `reboot` command.

13. Optional: old kernels can be removed after OS update:

```
package-cleanup --oldkernels --count=1 -y
```

System preparation for SAP HANA Scale-Up use-case

This is a common deployment methodology of SAP HANA on premise. The high-level steps for this use case are as follows:

- Create the Boot, Data, Log, and Shared Filesystem LUNs
- Install and Configure the Operating System
- Install SAP HANA
- Test the connection to the SAP HANA database

Workload Definition

As an example, Customer XX wants to implement SAP HANA with a requirement of a single system to start with and database growth not exceeding 1.5TB. Customer XX has the latest Skylake-based Cisco UCS B480 M5 servers and Pure Storage in his datacenter that he likes to leverage in a sharing mode. Since this is a TDI implementation, Customer XX can repurpose the FlashStack gear he has, making sure that HANA HWCCT TDI KPIs are met to receive SAP support.

Requirements

As a best practice, it is good to Scale-Up and then to Scale-Out based on the future growth requirements. For a SAP HANA database in a Scale-Up configuration, the required networks are the access network and the storage network. All other networks are optional.

- **Memory:** 1.5 TB
- **CPU:** 4x Intel Xeon Skylake CPUs 8176
Reference Workloads and Use Cases

Network: 1x Access Network with >=100Mbit/sec at a minimum. [At least 1GE]

Storage:

- `/hana/data` Size\(\text{data} = 1 \times \text{RAM} \), so 1.5 TB
- `/hana/log` \(\frac{\text{systems} > 512\text{GB}}{\text{redolog(min)}} = 512\text{GB}\)
- `/hana/shared` Size\(\text{installation(single-node)} = \min(1 \times \text{RAM}; 1 \text{TB})\), so 1TB

An average of 300 MB/sec throughput can be used as the baseline. Dependent on the use case it can be less (default analytics) or much more (heavy Suite on HANA).

Configure Storage

You will need a LUN for size 1.5TB for `/hana/data`, 512G LUN for `/hana/log`, both formatted with xfs and 1TB `/hana/shared` filesystem. Since this is scale-up system and `/hana/shared` is local to this system, we can use a block LUN formatted with xfs. A temporary software share of size 1 TB that would host all the installation DVDs could be used for this installation purpose.

You will use HANA-node01 host for this Scale-up system installation. The host at this point has a boot LUN HANA-node01-boot with OS preparation completed as detailed in previous sections – OS Installation and port-installation steps.

To create a 1.5 TB Data LUN, 512 GB Log LUN, 1 TB `/hana/shared` LUN in the array and associate them with the following:

1. **Data LUN**: Click Storage on navigation pane > Volumes tab on the right working pane. Use HANA-node01-data as name and 1.5T for provisioned size and click Create.

2. **Assign this LUN to the host HANA-Server01**. Select the created LUN on left pane and use menu bar on right pane to select ‘Connect’ option.
3. Check the HANA-Server01 box and click Connect.

4. Repeat steps 1–3 to create and add /hana/log and /hana/shared share LUNs.
Configure System for Storage Access

To configure the Operating systems on the SAP HANA node for /hana/data, /hana/log and /hana/shared filesystems access, complete the following steps:

1. Follow the steps documented in the Section “SAP HANA NODE OS Preparation” to install the operating system on HANA-node01 host.

2. Use a SSH client to login to the newly installed system as root

3. Multipath configuration:

 Multipathing needs to be setup to do round robin for all PURE LUNs by setting it up in /etc/multipath.conf. Install sysstat package with Yast2 to get iostat in the servers. It is very important to set the path-selector in multipath configuration to round-robin.

 - Rescan the scsi bus to detect devices added to the host.
     ```bash
cishana01m:~ # rescan-scsi-bus.sh
```
 - Restart multipath daemon if required.
     ```bash
     # systemctl stop multipathd
     # systemctl start multipathd
     ```

4. List the available multipath disks:

   ```bash
cishana01m:~ # multipath -ll
   3624a93701bf6621c4a55477c000113f4 dm-3 PURE,FlashArray
   size=1.0T features='0' hwhandler='0' wp=rw
   `--- policy='round-robin 0' prio=1 status=active
   | - 1:0:0:2 sdi 8:128 active ready running
   | - 2:0:0:2 sdy 65:128 active ready running
   | - 1:0:1:2 sdm 8:192 active ready running
   ```
5. Referring to the sizes, you can identify the devices to be used for boot, /hana/data, /hana/log and /hana/shared filesystems.

 a. Create the file systems for SAP HANA.

 b. Run this mkfs command with option to format the non-OS devices, such as DATA, LOG, /hana/shared LUN devices, as well as software share device.

 c. From the listing above, the filesystems to be prepared are 6TB size /hanadata filesystem, 512Gb /hana/log filesystem both formatted in xfs. You can use xfs for the 2T size /hana/shared filesystem as well as 1TB size temporary/software filesystem.

   ```
   # mkfs.xfs -f /dev/mapper/3624a93701bf6621c4a55477c000113f4
   # mkfs.xfs -f /dev/mapper/3624a93701bf6621c4a55477c000113f3
   # mkfs.xfs -f /dev/mapper/3624a93701bf6621c4a55477c000113f2
   ```
6. Create mount directories for the data, log, and HANA shared file systems.

 #mkdir -p /hana/data
 #mkdir -p /hana/log
 #mkdir -p /hana/shared

7. Mount options vary from the default Linux settings for XFS for SAP HANA data and log volumes. The following is a sample /etc/fstab entry. Make sure that you use the same mount options for the data and log file systems as shown in the following example:

 UUID=cbd24bd0-3eae-41f6-bbac-e2db6d8f6c70 / ext3 acl,user_xattr 1 2
 /dev/mapper/3624a93701bf6621c4a55477c000113f2 /hana/data xfs
 nobarrier,noatime,nodiratime,logbufs=8,logbsize=256k,async,swalloc,allocsize=1310 72k 1 2
 /dev/mapper/3624a93701bf6621c4a55477c000113f3 /hana/log xfs
 nobarrier,noatime,nodiratime,logbufs=8,logbsize=256k,async,swalloc,allocsize=1310 72k 1 2
 /dev/mapper/3624a93701bf6621c4a55477c000113f4 /hana/shared xfs defaults 1 2

8. Use the following command to mount the file systems.

 #mount -a

9. Use the df -h command to check the status of all mounted volumes.

 Filesystem Size Used Avail Use% Mounted on
 devtmpfs 756G 0 756G 0% /dev
 tmpfs 1.2T 0 1.2T 0% /dev/shm
 tmpfs 756G 13M 756G 1% /run
 tmpfs 756G 0 756G 0% /sys/fs/cgroup
 /dev/mapper/3624a93701bf6621c4a55477c000113f0 99G 6.1G 92G 7% /
 /dev/mapper/3624a93701bf6621c4a55477c000113f2 152G 0 152G 0% /run/user/0
 /dev/mapper/3624a93701bf6621c4a55477c000113f3 1.5T 33M 1.5T 2% /hana/data
 /dev/mapper/3624a93701bf6621c4a55477c000113f4 512G 33M 512G 1% /hana/log
 /dev/mapper/3624a93701bf6621c4a55477c000113f0 1.0T 33M 1.0T 1% /hana/shared

10. Change the directory permissions before you installing SAP HANA. Use the chown command on each SAP HANA node after the file systems are mounted.

 #chown -R 777 /hana/data
 #chown -R 777 /hana/log
 #chown -R 777 /hana/shared

System preparation for SAP HANA Scale-Out Use Case

This use case describes the setup N+1 Scale-Out HANA system.

The high-level steps for this use case are as follows:

1. Create the Boot, Data and Log LUNs.
2. Install and Configure the Operating System.
3. Prepare the /hana/data and /hana/log devices with XFS filesystem
4. Prepare NFS filesystem for /hana/shared
5. Install SAP HANA.
6. Test the connection to the SAP HANA database.

Workload Definition

Customer YY wants to implement SAP HANA with a requirement of a 4.5 TB with an option to scale as the need arises. Customer YY has the latest Skylake-based Cisco UCS B480 M5 servers and Pure Storage FlashArray//X in his data center that he leverages in a sharing mode. Since this is a TDI, customer YY wants to repurpose his FlashStack gear. He must make sure that the HANA HWCCT TDI KPIs are met to receive SAP support. You could address this with 3+1 scale out system.

Requirements

For a SAP HANA Scale-Out system the networks mandatorily required are the access network and the Inter-Node communication network. This use case also requires a /hana/shared file system which is accessible to all nodes of the cluster. For this we leverage the NFS share made available by the WFS running on the array’s controllers in a highly-available manner.

Network:
- 1x Access Network with >=100 Mbit/sec
- 1x Inter-Node Network with 10 GBit/sec
- 1x NFS network for the HANA Nodes /hana/shared access preferably with 10 GBit/sec

Each HANA node has-

Memory:
- 1.5TB

CPU:
- 4x Intel Xeon Skylake CPUs 8176

Storage:
- /hana/data Size_{data} = 1 x RAM, so 1.5 TB per node
- /hana/log [systems > 512GB] Size_{redolog(min)} = 512GB per node
- /hana/shared Size_{installation(scale-out)} = 1 x RAM_of_worker per 4 worker nodes, hence 1.5TB for the entire cluster

Configure Storage

You will need a LUN size 1.5TB for /hana/data, 512G LUN for /hana/log, both formatted with xfs for each node of the scale-out system. 1.5TB /hana/shared filesystem for the entire HANA system is presented as NFS share to all HANA Nodes You will use all the available nodes for this 3+1 scale-out system configuration.

With 3 worker nodes and 1 standby node, you will need 3 sets of 1.5TB DATA and 512GB LOG LUNs, one 1.5TB NFS share for use as /hana/shared.

1. To create LUNs: Click Storage on the left navigation pane > Select Volumes tab on the right working pane. Provide suitable names and respective sizes for the LUNs as planned above.
2. Assign DATA and LOG LUNs all hosts. To assign LUNs to hosts: Select the Storage > Volumes tab > LUN > use properties bar to select 'Connect' option. Select all nodes. Click Connect.
Configure System for Storage Access

To configure the OS on the SAP HANA node for /hana/data, /hana/log and /hana/shared filesystems access, complete the following steps:

1. **Multipath configuration:** (Perform these steps on all nodes)

 - **Multipathing needs to be setup to do round robin for all Pure Storage FlashArray//X LUNs by setting it up in /etc/multipath.conf. Install sysstat package with Yast2 to get iostat in the servers. It is very important to set the path-selector in multipath configuration to round-robin.**

2. **Rescan the scsi bus to detect devices added to the host:**

   ```bash
   # rescan-scsi-bus.sh
   ```

3. **Restart multipath daemon if needed:**

   ```bash
   # systemctl stop multipathd
   # systemctl start multipathd
   ```

4. **List the available multipath disks:**

   ```bash
   cishana01m:~ # multipath -ll | more
   3624a93701bf6621c4a55477c000113fa dm-11 PURE ,FlashArray
   size=512G features='0' hwhandler='0' wp=rw
   `+- policy='round-robin 0' prio=1 status=active
   | `- 6:0:0:7 sdi 8:128 active ready running
   | `- 8:0:0:7 sdae 65:224 active ready running
   | `- 6:0:1:7 sdp 8:240 active ready running
   | `- 8:0:1:7 sdar 66:176 active ready running
   | `- 6:0:2:7 sdab 65:176 active ready running
   | `- 8:0:2:7 sday 67:32 active ready running
   | `- 6:0:3:7 sdaq 66:160 active ready running
   | `- 8:0:3:7 sdbe 67:144 active ready running
   3624a93701bf6621c4a55477c000113f9 dm-10 PURE ,FlashArray
   size=512G features='0' hwhandler='0' wp=rw
   `+- policy='round-robin 0' prio=1 status=active
   | `- 6:0:0:6 sdh 8:112 active ready running
   | `- 8:0:0:6 sdac 65:192 active ready running
   | `- 6:0:1:6 sdo 8:224 active ready running
   | `- 8:0:1:6 sdao 66:144 active ready running
   | `- 6:0:2:6 sdz 65:144 active ready running
   | `- 8:0:2:6 sday 67:16 active ready running
   | `- 6:0:3:6 sdao 66:128 active ready running
   | `- 8:0:3:6 sdbd 67:128 active ready running
   3624a93701bf6621c4a55477c000113f8 dm-9 PURE ,FlashArray
   size=512G features='0' hwhandler='0' wp=rw
   `+- policy='round-robin 0' prio=1 status=active
   | `- 6:0:0:5 sdd 8:96 active ready running
   | `- 8:0:0:5 sdaa 65:160 active ready running
   | `- 6:0:1:5 sdn 8:208 active ready running
   | `- 8:0:1:5 sdan 66:112 active ready running
   | `- 6:0:2:5 sdx 65:112 active ready running
   | `- 8:0:2:5 sdaw 67:0 active ready running
   | `- 6:0:3:5 sdal 66:80 active ready running
   | `- 8:0:3:5 sdbd 67:112 active ready running
   | `- 8:0:3:5 sdbd 67:112 active ready running
   ```
5. Referring to the sizes you can identify the devices to be used for /hana/data and /hana/log devices..

6. Create the file systems for SAP HANA [Step to be performed on one of the modes in the cluster only].

7. Run this mkfs command with option to format the non-OS devices, such as DATA, and LOG LUN devices as well as software share device.

Exercise caution to not format the 100G boot device by mistake!
8. From the listing above, the filesystems to be prepared are 1.5TB size /hanadata filesystem, 512GB /hana/log filesystem both formatted in xfs.

```
# mkfs.xfs -f /dev/mapper/3624a93701bf6621c4a55477c000113fa
# mkfs.xfs -f /dev/mapper/3624a93701bf6621c4a55477c000113f9
# mkfs.xfs -f /dev/mapper/3624a93701bf6621c4a55477c000113f8
# mkfs.xfs -f /dev/mapper/3624a93701bf6621c4a55477c000113f7
# mkfs.xfs -f /dev/mapper/3624a93701bf6621c4a55477c000113f6
# mkfs.xfs -f /dev/mapper/3624a93701bf6621c4a55477c000113f5
```

9. Create mount directories for the data, log, and HANA shared file systems on all nodes:

```
# mkdir -p /hana/data/<SID>
# cd /hana/data/<SID>
# mkdir mnt00001 mnt00002 mnt00003

# mkdir -p /hana/log/<SID>
# cd /hana/log/<SID>
# mkdir mnt00001 mnt00002 mnt00003

# mkdir -p /hana/shared
```

10. Change the directory permissions on all nodes before you installing SAP HANA. Use the chown command on each SAP HANA node after the file systems are mounted.

```
# chmod -R 777 /hana/data
# chmod -R 777 /hana/log
# chmod -R 777 /hana/shared
```

11. Mount options vary from the default Linux settings for XFS for SAP HANA data and log volumes and NFS for /hana/shared. The following is a sample /etc/fstab entry. Make sure that you use the same mount options for the data, log and /hana/shared file systems as shown in the following example:

```bash
UUID=cbd24bd0-3eae-41f6-bbac-e2db6d8f6c70 / ext3 acl,user_xattr 1 1

/dev/mapper/3624a93701bf6621c4a55477c000113f5 /hana/data/ANA/mnt00001 xfs
   nobarrier,noatime,nodiratime,logbufs=8,logbsize=256k,async,swalloc,allocsize=131072k 1 2

/dev/mapper/3624a93701bf6621c4a55477c000113f8 /hana/log/ANA/mnt00001 xfs
   nobarrier,noatime,nodiratime,logbufs=8,logbsize=256k,async,swalloc,allocsize=131072k 1 2

/dev/mapper/3624a93701bf6621c4a55477c000113f6 /hana/data/ANA/mnt00002 xfs
   nobarrier,noatime,nodiratime,logbufs=8,logbsize=256k,async,swalloc,allocsize=131072k 1 2

/dev/mapper/3624a93701bf6621c4a55477c000113f9 /hana/log/ANA/mnt00002 xfs
   nobarrier,noatime,nodiratime,logbufs=8,logbsize=256k,async,swalloc,allocsize=131072k 1 2

/dev/mapper/3624a93701bf6621c4a55477c000113f7 /hana/data/ANA/mnt00003 xfs
   nobarrier,noatime,nodiratime,logbufs=8,logbsize=256k,async,swalloc,allocsize=131072k 1 2
```
We created the 1 TB size NFS share hana-fs for /hana/shared filesystem earlier and using the mount information here to update the /etc/fstab above.

12. Use the following command to mount the file systems:

 #mount -a

13. Use the df -h command to check the status of all mounted volumes:

 [root@cishana01 ~]# df -h

 Filesystem Size Used Avail Use% Mounted on
 /dev/mapper/3624a93701bf6621c4a55477c000113f1p2 96G 1.8G 89G 2% /
 devtmpfs 756G 0 756G 0% /dev
 tmpfs 756G 0 756G 0% /dev/shm
 tmpfs 756G 11M 756G 1% /run
 tmpfs 756G 0 756G 0% /sys/fs/cgroup
 /dev/mapper/3624a93701bf6621c4a55477c000113f1p1 976M 101M 875M 11% /boot
 /run/user/0 152G 0 152G 0% /run/user/0
 192.168.111.25:/hanashared 1.0T 227M 1.0T 1% /hana/shared
 /hana/shared 1.0T 227M 1.0T 1% /hana/shared
 /dev/mapper/3624a93701bf6621c4a55477c000113f5 1.5T 33M 1.5T 1% /hana/data/ANA/mnt00001
 /dev/mapper/3624a93701bf6621c4a55477c000113f8 512G 33M 512G 1% /hana/log/ANA/mnt00001
 /dev/mapper/3624a93701bf6621c4a55477c000113f6 1.5T 33M 1.5T 1% /hana/data/ANA/mnt00002
 /dev/mapper/3624a93701bf6621c4a55477c000113f9 512G 33M 512G 1% /hana/log/ANA/mnt00002
 /dev/mapper/3624a93701bf6621c4a55477c000113f7 1.5T 33M 1.5T 1% /hana/data/ANA/mnt00003
 /dev/mapper/3624a93701bf6621c4a55477c000113fa 512G 33M 512G 1% /hana/log/ANA/mnt00003
 [root@cishana02m ~]#

14. Enter the required information into the hosts file:

 a. Update the /etc/hosts file of all nodes with the IP addresses of different networks assigned to the hosts’ interfaces.

 vi /etc/hosts

 127.0.0.1 localhost
 # special IPv6 addresses
 ::1 localhost ipv6-localhost ipv6-loopback
 fe00::0 ipv6-localnet
 ff00::0 ipv6-multicast
 ff02::1 ipv6-allnodes
ff02::2 ipv6-allrouters
ff02::3 ipv6-allhosts
192.168.76.12 linux-jumpbox
#
Internal Network
##
192.168.220.201 cishana01.ciscolab.local cishana01
192.168.220.202 cishana02.ciscolab.local cishana02
192.168.220.203 cishana03.ciscolab.local cishana03
192.168.220.204 cishana04.ciscolab.local cishana04
#
NFS-shared Network
#
192.168.111.201 cishana01s.ciscolab.local cishana01s
192.168.111.202 cishana02s.ciscolab.local cishana02s
192.168.111.203 cishana03s.ciscolab.local cishana03s
192.168.111.204 cishana04s.ciscolab.local cishana04s
#
Client Network
#
192.168.222.201 cishana01c.ciscolab.local cishana01c
192.168.222.202 cishana02c.ciscolab.local cishana02c
192.168.222.203 cishana03c.ciscolab.local cishana03c
192.168.222.204 cishana04c.ciscolab.local cishana04c
#
AppServer Network
#
192.168.223.201 cishana01a.ciscolab.local cishana01a
192.168.223.202 cishana02a.ciscolab.local cishana02a
192.168.223.203 cishana03a.ciscolab.local cishana03a
192.168.223.204 cishana04a.ciscolab.local cishana04a
#
Admin Network
#
192.168.76.201 cishana01m.ciscolab.local cishana01m
192.168.76.202 cishana02m.ciscolab.local cishana02m
192.168.76.203 cishana03m.ciscolab.local cishana03m
192.168.76.204 cishana04m.ciscolab.local cishana04m
#
Backup Network
#
192.168.221.201 cishana01b.ciscolab.local cishana01b
192.168.221.202 cishana02b.ciscolab.local cishana02b
192.168.221.203 cishana03b.ciscolab.local cishana03b
192.168.221.204 cishana04b.ciscolab.local cishana04b
#
DataSource Network
#
192.168.224.201 cishana01d.ciscolab.local cishana01d
192.168.224.202 cishana02d.ciscolab.local cishana02d
192.168.224.203 cishana03d.ciscolab.local cishana03d
192.168.224.204 cishana04d.ciscolab.local cishana04d
#
Replication Network
#
SSH Keys

The SSH Keys must be exchanged between all nodes in a SAP HANA Scale-Out system for user ‘root’ and user <sid>adm.

1. Generate the rsa public key by executing the command:

   ```
   ssh-keygen -b 2048
   ```

2. The SSH Keys must be exchanged between all nodes in a SAP HANA Scale-Out system for user ‘root’ and <sid>adm user.

3. Exchange the rsa public key by executing the following command from the first server to rest of the servers in the scale-out system:

   ```
   ssh-copy-id -i /root/.ssh/id_rsa.pub cishana02
   ```

4. Repeat steps 1-3 for all the servers in the SAP HANA scale-out cluster.

SAP HANA Nodes Access to DATA and LOG LUNs

The next step is preparing the HANA nodes for access to DATA and LOG LUNs via SAP Storage Connector API

The SAP HANA Storage Connector API for Block is responsible for mounting and I/O fencing of the HANA persistent layer. It must be used in a HANA scale-out installation where the persistence resides on block-attached storage devices.

The API will be implemented by enabling the appropriate entry in the HANA global.ini file. This file resides in the /hana/shared/>SID>/global/hdb/custom/config directory.

The following is an example of a global.ini file for this 2+1 nodes scale out system.

The values for DATA and LOG partitions are its scsi-id which can be derived by doing a check on `ls /dev/mapper/36*` and a look at their capacity with `fdisk -l` on each of the device helps categorizing DATA and LOG partitions.

```ini
[communication]
listeninterface = .global

[persistence]
basepath_datavolumes = /hana/data/<<SID>>
basepath_logvolumes = /hana/log/<<SID>>
use_mountpoints = yes
basepath_shared=yes

[storage]
ha_provider = hdb_ha.fcClient
partition_*_*__prType = 5
partition_1_data__wwid = 3624a93701bf6621c4a55477c000113f5
partition_1_log__wwid = 3624a93701bf6621c4a55477c000113f8
partition_2_data__wwid = 3624a93701bf6621c4a55477c000113f6
```
Reference Workloads and Use Cases

\[
\begin{align*}
\text{partition}_2_\text{log_wwid} & = 3624a93701bf6621c4a55477c000113fa \\
\text{partition}_3_\text{data_wwid} & = 3624a93701bf6621c4a55477c000113f7 \\
\text{partition}_3_\text{log_wwid} & = 3624a93701bf6621c4a55477c000113f9
\end{align*}
\]

[trace]
ha_fcclient = info

SAP HANA Installation

Please refer to the official SAP documentation which describes the installation process with and without the SAP unified installer.

⚠️ Read the SAP Notes before you start the installation (see Important SAP Notes). These SAP Notes contain the latest information about the installation, as well as corrections to the installation documentation.

SAP HANA Server Installation Guide

All other SAP installation and administration documentation is available here: http://service.sap.com/instguides

Important SAP Notes

Read the following SAP Notes before you start the installation. These SAP Notes contain the latest information about the installation, as well as corrections to the installation documentation.

The latest SAP Notes can be found here: https://service.sap.com/notes.

SAP HANA IMDB Related Notes

- [SAP Note 1514967](https://service.sap.com/notes) - SAP HANA: Central Note
- [SAP Note 1523337](https://service.sap.com/notes) - SAP HANA Database: Central Note
- [SAP Note 2000003](https://service.sap.com/notes) - FAQ: SAP HANA
- [SAP Note 1730999](https://service.sap.com/notes) - Configuration changes in SAP HANA appliance
- [SAP Note 1514966](https://service.sap.com/notes) - SAP HANA 1.0: Sizing SAP In-Memory Database
- [SAP Note 1780950](https://service.sap.com/notes) - Connection problems due to host name resolution
- [SAP Note 1743225](https://service.sap.com/notes) - SAP HANA: Potential failure of connections with scale out nodes
- [SAP Note 1755396](https://service.sap.com/notes) - Released DT solutions for SAP HANA with disk replication
- [SAP Note 1890444](https://service.sap.com/notes) - HANA system slow due to CPU power save mode
- [SAP Note 1681092](https://service.sap.com/notes) - Support for multiple SAP HANA databases on a single SAP HANA appliance
- [SAP Note 1514966](https://service.sap.com/notes) - SAP HANA: Sizing SAP HANA Database
- [SAP Note 1637145](https://service.sap.com/notes) - SAP BW on HANA: Sizing SAP HANA Database
- [SAP Note 1793345](https://service.sap.com/notes) - Sizing for Suite on HANA

Linux Related Notes

- [SAP Note 2235581](https://service.sap.com/notes) - SAP HANA: Supported Operating Systems
Reference Workloads and Use Cases

SAP Note 2009879 - SAP HANA Guidelines for RedHat Enterprise Linux (RHEL)
SAP Note 2292690 - SAP HANA DB: Recommended OS settings for RHEL 7
SAP Note 2228351 - SAP HANA Database SPS 11 revision 110 (or higher) on RHEL 6 or SLES 11
SAP Note 1944799 - SAP HANA Guidelines for SLES Operating System
SAP Note 2205917 - SAP HANA DB: Recommended OS settings for SLES 12 / SLES for SAP Applications 12
SAP Note 1731000 - Non-recommended configuration changes
SAP Note 2382421 - Optimizing the Network Configuration on HANA- and OS-Level
SAP Note 1557506 - Linux paging improvements
SAP Note 1740136 - SAP HANA: wrong mount option may lead to corrupt persistency
SAP Note 1829651 - Time zone settings in SAP HANA scale out landscapes

SAP Application Related Notes
SAP Note 1658845 - SAP HANA DB hardware check
SAP Note 1637145 - SAP BW on SAP HANA: Sizing SAP In-Memory Database
SAP Note 1661202 - Support for multiple applications on SAP HANA
SAP Note 1681092 - Support for multiple SAP HANA databases one HANA aka Multi SID
SAP Note 1577128 - Supported clients for SAP HANA 1.0
SAP Note 1808450 - Homogenous system landscape for on BW–HANA
SAP Note 1976729 - Application Component Hierarchy for SAP HANA
SAP Note 1927949 - Standard Behavior for SAP Logon Tickets
SAP Note 1577128 - Supported clients for SAP HANA
SAP Note 2186744 - FAQ: SAP HANA Parameters
SAP Note 2267798 - Configuration of the SAP HANA Database during Installation Using hdbparam
SAP Note 2156526 - Parameter constraint validation on section indices does not work correctly with hdbparam
SAP Note 2399079 - Elimination of hdbparam in HANA 2

Third Party Software
SAP Note 1730928 - Using external software in a SAP HANA appliance
SAP Note 1730929 - Using external tools in an SAP HANA appliance
SAP Note 1730930 - Using antivirus software in an SAP HANA appliance
SAP Note 1730932 - Using backup tools with Backint for SAP HANA

SAP HANA Virtualization
SAP Note 1788665 - SAP HANA running on VMware vSphere VMs
HWCCT: fsperf parameters

The following parameters were set for the new performance test tool from SAP HWCCT tool fsperf. This would change I/O behavior and to enhance the database to work with the file system and storage.

For Data Volumes use the following hdbparams:

- async_read_submit=off
- async_write_submit_blocks=auto
- max_parallel_io_requests=128
- async_write_submit_blocks=new

For Log Volumes use the following hdbparams:

- async_read_submit=off
- async_write_submit_blocks=new

SAP HANA 1.0

For more information regarding these parameters please refer to SAP Note 1943937. In order to use these parameters in SAP HANA you need to execute the following commands in the Linux shell as <sid>adm user.

```
hdbparam -paraset fileio "[<path>]" async_write_submit_blocks=new
```

To set async_write_submit_blocks for Data persistence: (Check the select query on the view M_VOLUME_IO_TOTAL_STATISTICS shown below to get the information on the path and trigger ratios)

```
hdbparam -paraset fileio "/hana/data/<SID>/mnt00001/hdb0000<n>/" async_write_submit_blocks=new
```

The command would return lines indicating the success of the parameter setting for all the services like NameServer, Preprocessor, IndexServer etc.

SAP HANA 2.0

Up to HANA1SP12, the hdbparam tool was part of the HANA installation and was used to manage a subset of HANA configuration parameters. With HANA 2.0, the hdbparam tool has been deprecated. It is no longer installed as part of HANA. When upgrading to HANA 2.0 from HANA 1.0, the tool and the binary files storing the configured parameter values will be removed.

The parameters managed by hdbparam have been moved to global.ini. All normal rules for Ini-file-parameters apply.

The parameters managed by hdbparam were:

- fileio.num_submit_queues
- fileio.num_completion_queues
- fileio.size_kernel_io_queue
- fileio.max_parallel_io_requests
- fileio.min_submit_batch_size
• fileio.max_submit_batch_size
• fileio.async_write_submit_active
• fileio.async_write_submit_blocks
• fileio.async_read_submit

You can update these parameters directly in global.ini or see the example below.

For example, here only two parameters exported in step differ from the defaults in global.ini:

• fileio.max_submit_batch_size = 64
• fileio.async_read_submit[DATA] = off

Use ALTER SYSTEM ALTER CONFIGURATION as follows

ALTER SYSTEM ALTER CONFIGURATION ('global.ini', 'SYSTEM') SET ('fileio', 'max_submit_batch_size') = '64';
ALTER SYSTEM ALTER CONFIGURATION ('global.ini', 'SYSTEM') SET ('fileio', 'async_read_submit[DATA]') = 'off';

Add a "WITH RECONFIGURE" to all or at least the last ALTER SYSTEM ALTER CONFIGURATION command if you want to apply the parameter changes. If you have changed the fileio.size_kernel_io_queue parameter, you have to restart the database since the parameter change cannot be applied online.

following parameters were set during tests with SAP HWCCT's tool 'fsperf'. This changes I/O behavior and tunes the database to work with the file system and storage.

async_read_submit=off
async_write_submit_blocks=new

For more information regarding these parameters please refer to SAP Note 1943937. In order to use these parameters in SAP HANA you need to execute the following commands in the Linux shell as <sid>adm user.

hdbparam -paraset fileio "[<path>]" . async_write_submit_blocks=new

To set async_write_submit_blocks for Data persistence: (Check the select query on the view M_VOLUME_IO_TOTAL_STATISTICS shown below to get the information on the path and trigger ratios)

hdbparam -paraset fileio "[/hana/data/<SID>/mnt00001/hdb00003/]".
async_write_submit_blocks=new

Pure Storage FlashArray//X: Sizing Guidelines

Pure Storage recommends the following guidelines for sizing customer HANA environments. Please consult with your Pure Storage sales team for more detailed information.

<table>
<thead>
<tr>
<th>AFA Model</th>
<th>SAP HANA Nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>//X10 R2</td>
<td>Up to 14</td>
</tr>
<tr>
<td>//X20 R2</td>
<td>Up to 22</td>
</tr>
<tr>
<td>//X50 R2</td>
<td>Up to 30</td>
</tr>
<tr>
<td>AFA Model</td>
<td>SAP HANA Nodes</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
</tr>
<tr>
<td>//X70 R2</td>
<td>Up to 38</td>
</tr>
<tr>
<td>//X90 R2</td>
<td>Up to 44</td>
</tr>
</tbody>
</table>
References

Certified SAP HANA Hardware Directory

Certified SAP HANA Hardware Directory: Enterprise Storage

SAP HANA TDI Documentation

- SAP HANA TDI: Overview
- SAP HANA TDI: FAQ
- SAP HANA TDI: Storage Requirements
- SAP HANA TDI: Network Requirements

SAP Notes

SAP Note 1943937: Hardware Configuration Check Tool – Central Note

Cisco and Pure Storage: FlashStack

- Cisco UCS: Design Zone for SAP Applications (technical documentation)
- Cisco UCS: Data Center Solutions for SAP (customer references)
- Pure Storage: FlashArray //X series
- Pure Storage: FlashArray //X for SAP applications
Cisco and Pure Storage have partnered to deliver the FlashStack solution, which uses best-in-class storage, server, and network components to serve as the foundation for a variety of workloads, enabling efficient architectural designs that can be quickly and confidently deployed. FlashStack Datacenter is predesigned to provide agility to the large enterprise data centers with high availability and storage scalability. With a FlashStack solution, customers can leverage a secure, integrated, and optimized stack that includes compute, network, and storage resources that are sized, configured and deployed in a flexible manner.

The following factors make the combination of Cisco UCS with Pure Storage FlashArray//X so powerful for SAP environments:

- Cisco UCS stateless computing architecture provided by the Service Profile capability of Cisco UCS allows for fast, non-disruptive workload changes to be executed simply and seamlessly across the integrated Cisco UCS infrastructure and Cisco x86 servers.
- Hardware-level redundancy for all major components using Cisco UCS and Pure Storage availability features.
- Integrated, holistic system and data management across your entire infrastructure whether on-premise, in a Cloud, or a hybrid combination of both.
- Purity//FA’s Evergreen solution allows customers to move storage costs from CapEx to OpEx with consumption-based pricing and cloud-like flexibility, even on-prem. Storage never goes out of date and you never run short of capacity.

FlashStack is a flexible infrastructure platform composed of pre-sized storage, networking, and server components. It is designed to ease your IT transformation and operational challenges with maximum efficiency and minimal risk.

FlashStack differs from other solutions by providing:

- Integrated, validated technologies from industry leaders and top-tier software partners.
- A single platform built from unified compute, fabric, and storage technologies, allowing you to scale to large-scale data centers without architectural changes.
- Centralized, simplified management of infrastructure resources, including end-to-end automation.
- Evergreen storage so you will never pay for more storage than you need, but still have ample storage available on demand when you need it.
- A flexible Cooperative Support Model that resolves issues rapidly and spans across new and legacy products.
About the Author

Pramod Ramamurthy, Engineer, Technical Marketing, Cisco Systems, Inc.

Pramod is a Technical Marketing Engineer with Cisco UCS Solutions and Performance Group. Pramod has over 15 years of experience in the IT industry focusing on SAP technologies. Pramod is currently leading the Converged Infrastructure Solutions design, validation and associated marketing collaterals’ build for SAP applications and SAP HANA.

Acknowledgements

- Shailendra Mruthunjaya, Cisco Systems Inc.
- Erik Lillestolen, Cisco Systems, Inc.
- Krishna Satyavarapu, Pure Storage
- Van Phan, Pure Storage